文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

铜掺杂氧化锌纳米粒子的合成、表征及其抗癌效果评估:体内外实验

Synthesis, characterization, and evaluation of copper-doped zinc oxide nanoparticles anticancer effects: in vitro and in vivo experiments.

作者信息

Ghaznavi Habib, Hajinezhad Mohammad Reza, Hesari Zahra, Shirvaliloo Milad, Sargazi Saman, Shahraki Sheida, Saberi Eshagh Ali, Sheervalilou Roghayeh, Jafarinejad Somayeh

机构信息

Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, 9816743463, Iran.

Basic Veterinary Science Department, Veterinary Faculty, University of Zabol, Zabol, Iran.

出版信息

BMC Cancer. 2025 Jan 8;25(1):37. doi: 10.1186/s12885-024-13398-w.


DOI:10.1186/s12885-024-13398-w
PMID:39780079
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11707944/
Abstract

BACKGROUND AND AIM: Zinc oxide and copper oxide nanoparticles are known for their promising biological activities. This study aims to synthesize zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles to harness the combined cytotoxic and anticancer effects of them in vitro and in vivo studies. METHODS: Zinc oxide nanoparticles, both doped and undoped, were synthesized using a chemical co-precipitation method. All synthetized nanoparticles were examined for shape, crystal structure and morphology/ microstructure using X-ray diffractometers, scanning electron microscopy and transmission electron microscopy. The hydrodynamic diameter and zeta-potential was measured by dynamic light scattering. Energy Dispersive Spectroscopy evaluated copper doping in zinc oxide nanoparticles. The anticancer effects were tested on bone cancer fibroblast cells and normal lung fibroblast cells using cell viability test, colony formation assay, and lactate dehydrogenase assay at concentrations of 0, 1, 10, 17.5, 25, 50, 100, and 200 μg/ml. In vivo experiments assessed serum markers (Aspartate aminotransferase, Alanine transaminase, blood urea nitrogen and creatinine) and liver malondialdehyde levels in response to 5 mg/kg and 50 mg/kg doses. RESULTS: zinc oxide nanoparticles exhibited a spherical morphology and good dispersion, with an average grain size ranging from 15-39 nm. Copper-doped zinc oxide nanoparticles displayed a mixture of rod-like and grain-like structures, and a larger average grain size of 18-68 nm. X-ray diffraction analysis confirmed the wurtzite crystal structure for both types of nanoparticles. While individual grain sizes varied, the mean particle size for all samples, including those with increasing copper doping, was approximately 100 ± 0.1 nm. Both nanoparticles exhibited a negative zeta potential. In vitro studies revealed that copper-doped zinc oxide nanoparticles, zinc oxide nanoparticles, and bulk zinc oxide exhibited cytotoxic activity (cell viability < 80%) and induced apoptosis in bone cancer fibroblast cells at 17.5 μg/ml after 72 h (P < 0.05). The copper-doped zinc oxide nanoparticles demonstrated higher cytotoxicity compared to zinc oxide nanoparticles and bulk zinc oxide at higher concentrations (P < 0.05). The copper-doped zinc oxide nanoparticles also showed significant inhibition of cell proliferation over 10 days at 17.5 μg/ml (P < 0.05). In vivo studies indicated no significant changes in serum Aspartate aminotransferase, Alanine transaminase, blood urea nitrogen, and creatinine levels at 5 mg/kg. However, a 50 mg/kg dose of zinc oxide nanoparticles and copper-doped zinc oxide nanoparticles significantly increased these serum markers and liver malondialdehyde levels (P < 0.05). Histological analysis revealed liver injury in rats treated with 50 mg/kg but not at 0.5 mg/kg. CONCLUSIONS: The copper-doped zinc oxide nanoparticles exhibit enhanced cytotoxicity and anticancer activity compared to zinc oxide nanoparticles and bulk zinc oxide, particularly at higher concentrations. High doses of these nanoparticles could induce significant biochemical changes and liver injury in vivo, highlighting the need for careful dose management.

摘要

背景与目的:氧化锌和氧化铜纳米颗粒因其具有潜在的生物活性而闻名。本研究旨在合成氧化锌纳米颗粒和铜掺杂氧化锌纳米颗粒,以在体外和体内研究中利用它们联合的细胞毒性和抗癌作用。 方法:采用化学共沉淀法合成了掺杂和未掺杂的氧化锌纳米颗粒。使用X射线衍射仪、扫描电子显微镜和透射电子显微镜对所有合成的纳米颗粒的形状、晶体结构和形态/微观结构进行了检测。通过动态光散射测量流体动力学直径和zeta电位。能量色散光谱法评估了氧化锌纳米颗粒中的铜掺杂情况。使用细胞活力测试、集落形成试验和乳酸脱氢酶试验,在浓度为0、1、10、17.5、25、50、100和200μg/ml的条件下,对骨癌细胞和成纤维细胞进行抗癌效果测试。体内实验评估了5mg/kg和50mg/kg剂量下的血清标志物(天冬氨酸转氨酶、丙氨酸转氨酶、血尿素氮和肌酐)以及肝脏丙二醛水平。 结果:氧化锌纳米颗粒呈现球形形态且分散良好,平均粒径范围为15 - 39nm。铜掺杂氧化锌纳米颗粒呈现棒状和颗粒状结构的混合物,平均粒径较大,为18 - 68nm。X射线衍射分析证实了两种类型的纳米颗粒均为纤锌矿晶体结构。虽然单个晶粒尺寸有所不同,但所有样品(包括铜掺杂量增加的样品)的平均粒径约为100±0.1nm。两种纳米颗粒均表现出负的zeta电位。体外研究表明,铜掺杂氧化锌纳米颗粒、氧化锌纳米颗粒和块状氧化锌在72小时后,在17.5μg/ml浓度下对骨癌细胞和成纤维细胞表现出细胞毒性活性(细胞活力<80%)并诱导细胞凋亡(P<0.05)。在较高浓度下,铜掺杂氧化锌纳米颗粒比氧化锌纳米颗粒和块状氧化锌表现出更高的细胞毒性(P<0.05)。铜掺杂氧化锌纳米颗粒在17.5μg/ml浓度下,在10天内也显示出对细胞增殖的显著抑制作用(P<0.05)。体内研究表明,5mg/kg剂量下血清天冬氨酸转氨酶、丙氨酸转氨酶、血尿素氮和肌酐水平无显著变化。然而,50mg/kg剂量的氧化锌纳米颗粒和铜掺杂氧化锌纳米颗粒显著增加了这些血清标志物和肝脏丙二醛水平(P<0.05)。组织学分析显示,50mg/kg处理的大鼠出现肝脏损伤,而0.5mg/kg处理的大鼠未出现。 结论:与氧化锌纳米颗粒和块状氧化锌相比,铜掺杂氧化锌纳米颗粒表现出增强的细胞毒性和抗癌活性,尤其是在较高浓度下。高剂量的这些纳米颗粒可在体内诱导显著的生化变化和肝脏损伤,突出了谨慎管理剂量的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/1db7239b3d99/12885_2024_13398_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/179939dc0963/12885_2024_13398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/e509183f7546/12885_2024_13398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/6a0e0751dd06/12885_2024_13398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/60ff956c7f33/12885_2024_13398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/455b836af776/12885_2024_13398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/dd812cf65fe7/12885_2024_13398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/b7fcad2e4fdc/12885_2024_13398_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/1db7239b3d99/12885_2024_13398_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/179939dc0963/12885_2024_13398_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/e509183f7546/12885_2024_13398_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/6a0e0751dd06/12885_2024_13398_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/60ff956c7f33/12885_2024_13398_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/455b836af776/12885_2024_13398_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/dd812cf65fe7/12885_2024_13398_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/b7fcad2e4fdc/12885_2024_13398_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b76/11707944/1db7239b3d99/12885_2024_13398_Fig8_HTML.jpg

相似文献

[1]
Synthesis, characterization, and evaluation of copper-doped zinc oxide nanoparticles anticancer effects: in vitro and in vivo experiments.

BMC Cancer. 2025-1-8

[2]
Green Synthesis of Zinc Oxide Nanoparticles as a Promising Nanomedicine Approach for Anticancer, Antibacterial, and Anti-Inflammatory Therapies.

Int J Nanomedicine. 2025-4-7

[3]
Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells.

Sci Rep. 2024-6-12

[4]
Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from and Its Nanoantibiotic Potential.

Int J Nanomedicine. 2020-11-2

[5]
Enhanced cytotoxic and genotoxic effects of gadolinium-doped ZnO nanoparticles on irradiated lung cancer cells at megavoltage radiation energies.

Mater Sci Eng C Mater Biol Appl. 2019-5-9

[6]
Formulation, preparation of niosome loaded zinc oxide nanoparticles and biological activities.

Sci Rep. 2024-7-19

[7]
Phyto-mediated synthesized multifunctional Zn/CuO NPs hybrid nanoparticles for enhanced activity for kidney cancer therapy: A complete physical and biological analysis.

J Photochem Photobiol B. 2018-7-6

[8]
Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2014-11

[9]
Betanin inspired zinc oxide nanoparticles: The potential antioxidant and anticancer activity against human lung cancer cell line (A549).

Biochem Biophys Res Commun. 2025-1

[10]
Psidium guajav-mediated zinc oxide nanoparticles as a multifunctional, microbicidal, antioxidant and antiproliferative agent against destructive pathogens.

Bioprocess Biosyst Eng. 2024-9

引用本文的文献

[1]
Green synthesis of silver nanoparticles from plant Astragalus fasciculifolius Bioss and evaluating cytotoxic effects on MCF7 human breast cancer cells.

Sci Rep. 2025-7-15

[2]
Investigating the cytotoxicity of Aluminum-Doped zinc oxide nanoparticles in normal versus cancerous breast cells.

Sci Rep. 2025-7-12

本文引用的文献

[1]
Enhanced anticancer and biological activities of environmentally friendly Ni/Cu-ZnO solid solution nanoparticles.

Heliyon. 2024-10-31

[2]
New insights into targeted therapy of glioblastoma using smart nanoparticles.

Cancer Cell Int. 2024-5-7

[3]
Fabrication of bimetallic Ag@ZnO nanocomposite and its anti-cancer activity on cervical cancer via impeding PI3K/AKT/mTOR pathway.

J Trace Elem Med Biol. 2024-7

[4]
Phyto-fabricated ZnO nanoparticles for anticancer, photo-antimicrobial effect on carbapenem-resistant/sensitive Pseudomonas aeruginosa and removal of tetracycline.

Bioprocess Biosyst Eng. 2024-8

[5]
Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells.

Sci Rep. 2024-1-25

[6]
Aptamer-functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends.

Biotechnol Prog. 2023

[7]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

[8]
Effects of folate-conjugated FeO@Au core-shell nanoparticles on oxidative stress markers, DNA damage, and histopathological characteristics: evidence from in vitro and in vivo studies.

Med Oncol. 2022-6-18

[9]
Paraclostridium benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications.

Oxid Med Cell Longev. 2022

[10]
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis.

Nanomaterials (Basel). 2022-3-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索