Suppr超能文献

电荷转移导致吸附在六方氮化硼上的单个苝分子的振动耦合减弱

Charge Transfer-Induced Weakening of Vibronic Coupling for Single Terrylene Molecules Adsorbed onto Hexagonal Boron Nitride.

作者信息

de Haas Titus, Smit Robert, Tebyani Arash, Bhattacharyya Semonti, Watanabe Kenji, Taniguchi Takashi, Buda Francesco, Orrit Michel

机构信息

Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.

Huygens-Kamerlingh Onnes Laboratory, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands.

出版信息

J Phys Chem Lett. 2025 Jan 9;16(1):349-356. doi: 10.1021/acs.jpclett.4c02899. Epub 2024 Dec 29.

Abstract

Fluorescence spectra of single terrylene molecules adsorbed on hexagonal boron nitride flakes were recorded at cryogenic temperatures. The pure electronic transitions of terrylene molecules are spread over a broad energy scale from 570 to 610 nm. Surprisingly, peaks in the vibrationally resolved fluorescence spectrum show intensity variations of ≤20-fold between molecules. We find an extreme case in which the Debye-Waller-Franck-Condon factor of the zero-phonon line exceeds 0.8. The vibronic intensity correlates with both the spectral position of the electronic transition and the frequency of the longitudinal stretch mode, which varies between 243 and 257 cm. Using density functional theory calculations, we show that these observations can be explained by terrylene chemisorption on charge-donating defect sites. The electronic states of molecules at such chemisorption sites would be very attractive for the efficient emission of single photons with narrow lines and for the generation of indistinguishable photons.

摘要

在低温下记录了吸附在六方氮化硼薄片上的单个苝分子的荧光光谱。苝分子的纯电子跃迁分布在570至610纳米的宽能量范围内。令人惊讶的是,振动分辨荧光光谱中的峰在分子之间显示出≤20倍的强度变化。我们发现了一种极端情况,其中零声子线的德拜-瓦勒-弗兰克-康登因子超过0.8。振动电子强度与电子跃迁的光谱位置和纵向拉伸模式的频率相关,纵向拉伸模式的频率在243至257厘米之间变化。使用密度泛函理论计算,我们表明这些观察结果可以通过苝在供电荷缺陷位点上的化学吸附来解释。在这种化学吸附位点上分子的电子态对于高效发射窄线单光子和产生不可区分的光子将非常有吸引力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea34/11726798/981104c45058/jz4c02899_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验