Suppr超能文献

基于预处理X射线图像利用残差神经网络进行膝关节骨关节炎检测与严重程度分类

Knee Osteoarthritis Detection and Severity Classification Using Residual Neural Networks on Preprocessed X-ray Images.

作者信息

Mohammed Abdul Sami, Hasanaath Ahmed Abul, Latif Ghazanfar, Bashar Abul

机构信息

Computer Engineering Department, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia.

Computer Science Department, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 Apr 10;13(8):1380. doi: 10.3390/diagnostics13081380.

Abstract

One of the most common and challenging medical conditions to deal with in old-aged people is the occurrence of knee osteoarthritis (KOA). Manual diagnosis of this disease involves observing X-ray images of the knee area and classifying it under five grades using the Kellgren-Lawrence (KL) system. This requires the physician's expertise, suitable experience, and a lot of time, and even after that the diagnosis can be prone to errors. Therefore, researchers in the ML/DL domain have employed the capabilities of deep neural network (DNN) models to identify and classify KOA images in an automated, faster, and accurate manner. To this end, we propose the application of six pretrained DNN models, namely, VGG16, VGG19, ResNet101, MobileNetV2, InceptionResNetV2, and DenseNet121 for KOA diagnosis using images obtained from the Osteoarthritis Initiative (OAI) dataset. More specifically, we perform two types of classification, namely, a binary classification, which detects the presence or absence of KOA and secondly, classifying the severity of KOA in a three-class classification. For a comparative analysis, we experiment on three datasets (Dataset I, Dataset II, and Dataset III) with five, two, and three classes of KOA images, respectively. We achieved maximum classification accuracies of 69%, 83%, and 89%, respectively, with the ResNet101 DNN model. Our results show an improved performance from the existing work in the literature.

摘要

在老年人中最常见且最具挑战性的医疗状况之一是膝关节骨关节炎(KOA)的发生。这种疾病的人工诊断包括观察膝关节区域的X射线图像,并使用凯尔格伦-劳伦斯(KL)系统将其分为五个等级。这需要医生的专业知识、适当的经验和大量时间,而且即便如此,诊断仍可能容易出错。因此,机器学习/深度学习领域的研究人员利用深度神经网络(DNN)模型的能力,以自动化、更快且准确的方式识别和分类KOA图像。为此,我们提出应用六个预训练的DNN模型,即VGG16、VGG19、ResNet101、MobileNetV2、InceptionResNetV2和DenseNet121,用于使用从骨关节炎倡议(OAI)数据集获得的图像进行KOA诊断。更具体地说,我们进行两种类型的分类,即二元分类,用于检测KOA的存在与否;其次是在三类分类中对KOA的严重程度进行分类。为了进行比较分析,我们分别在三个数据集(数据集I、数据集II和数据集III)上进行实验,这些数据集分别包含五类、两类和三类KOA图像。使用ResNet101 DNN模型,我们分别取得了69%、83%和89%的最大分类准确率。我们的结果表明,与文献中的现有工作相比,性能有所提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ac0/10137589/a55f6cc80c9a/diagnostics-13-01380-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验