Suppr超能文献

优化大规模伤亡事件应对:关于集中患者转运及其对分诊效率影响的事件报告

Optimizing mass casualty: an incident report of centralizing patient transport and its impact on triage efficiency.

作者信息

Taniguchi Hiroaki, Nagasawa Hiroki, Sakai Tatsuro, Ohsaka Hiromichi, Omori Kazuhiko, Yanagawa Youichi

机构信息

Department of Acute Critical Care Medicine, Shizuoka Hospital, Juntendo University, Japan.

出版信息

J Rural Med. 2025 Jan;20(1):58-62. doi: 10.2185/jrm.2024-029. Epub 2025 Jan 1.

Abstract

In mass casualty incidents, effective triage, treatment, and transport are critical for efficient management but often deviate from practices and ethical standards. In terms of resource allocation, decentralized transport is the predominant transport method; however, it is not standardized. This report retrospectively analyzed the response to a mass casualty incident at a university emergency center. By centralizing patient transport from the scene, the time to patient transport could be shortened, the burden on the scene related to transport could be reduced, and undertriage at the scene could be avoided. No trauma-related deaths occurred. This case provides a valuable contribution to the understanding of situations in which critical patients may concentrate in emergency centers during future mass-casualty incidents.

摘要

在大规模伤亡事件中,有效的分诊、治疗和转运对于高效管理至关重要,但往往偏离了常规做法和道德标准。在资源分配方面,分散式转运是主要的转运方式;然而,它并不规范。本报告回顾性分析了一所大学急诊中心对一起大规模伤亡事件的应对情况。通过集中从现场转运患者,可以缩短患者转运时间,减轻现场与转运相关的负担,并避免现场分诊不足。未发生与创伤相关的死亡。该案例为理解未来大规模伤亡事件中危重症患者可能集中在急诊中心的情况提供了宝贵的参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9ee/11704606/9afdb6dd1b32/jrm-20-058-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验