Suppr超能文献

使用扫频源眼前节光学相干断层扫描技术对眼前节炎症进行自动定量分析:一项初步研究。

Automated Quantitative Analysis of Anterior Segment Inflammation Using Swept-Source Anterior Segment Optical Coherence Tomography: A Pilot Study.

作者信息

Keino Hiroshi, Aman Takuto, Furuya Ryota, Nakayama Makiko, Okada Annabelle A, Sunayama Wataru, Hatanaka Yuji

机构信息

Department of Ophthalmology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Tokyo 181-8611, Japan.

Faculty of Science and Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan.

出版信息

Diagnostics (Basel). 2022 Nov 5;12(11):2703. doi: 10.3390/diagnostics12112703.

Abstract

Background: The aim of this study is to develop an automated evaluation of anterior chamber (AC) cells in uveitis using anterior segment (AS) optical coherence tomography (OCT) images. Methods: We analyzed AS swept-source (SS)-OCT (CASIA 2) images of 31 patients (51 eyes) with uveitis using image analysis software (Python). An automated algorithm was developed to detect cellular spots corresponding to hyper-reflective spots in the AC, and the correlation with Standardization of Uveitis Nomenclature (SUN) grading AC cells score was evaluated. The approximated AC grading value was calculated based on the logarithmic approximation curve between the number of cellular spots and the SUN grading score. Results: Among 51 eyes, cellular spots were automatically segmented in 48 eyes, whereas three eyes (all SUN grading AC cells score: 4+) with severe fibrin formation in the AC were removed by the automated algorithm. The AC cellular spots increased with an increasing SUN grading score (p < 0.001). The 48 eyes were split into training data (26 eyes) and test data (22 eyes). There was a significant correlation between the SUN grading score and the number of cellular spots in 26 eyes (rho: 0.843, p < 0.001). There was a significant correlation between the SUN grading score and the approximated grading value of 22 eyes based on the logarithmic approximation curve (rho: 0.774, p < 0.001). Leave-one-out cross-validation analysis demonstrated a significant correlation between the SUN grading score and the approximated grading value of 48 eyes (rho: 0.748, p < 0.001). Conclusions: This automated anterior AC cell analysis using AS SS-OCT showed a significant correlation with clinical SUN grading scores and provided SUN AC grading values as a continuous variable. Our findings suggest that automated grading of AC cells could improve the accuracy of a quantitative assessment of AC inflammation using AS-OCT images and allow the objective and rapid evaluation of anterior segment inflammation in uveitis. Further investigations on a large scale are required to validate this quantitative measurement of anterior segment inflammation in uveitic eyes.

摘要

背景

本研究旨在利用眼前节(AS)光学相干断层扫描(OCT)图像开发一种对葡萄膜炎患者前房(AC)细胞进行自动评估的方法。方法:我们使用图像分析软件(Python)分析了31例(51只眼)葡萄膜炎患者的AS扫频源(SS)-OCT(CASIA 2)图像。开发了一种自动算法来检测与AC中高反射点相对应的细胞点,并评估其与葡萄膜炎命名标准化(SUN)分级AC细胞评分的相关性。基于细胞点数量与SUN分级评分之间的对数近似曲线计算近似的AC分级值。结果:在51只眼中,48只眼的细胞点被自动分割,而3只前房有严重纤维蛋白形成的眼(所有SUN分级AC细胞评分为4+)被自动算法排除。AC细胞点随SUN分级评分的增加而增加(p<0.001)。48只眼被分为训练数据(26只眼)和测试数据(22只眼)。26只眼中SUN分级评分与细胞点数量之间存在显著相关性(rho:0.843,p<0.001)。基于对数近似曲线,22只眼中SUN分级评分与近似分级值之间存在显著相关性(rho:0.774,p<0.001)。留一法交叉验证分析表明,48只眼中SUN分级评分与近似分级值之间存在显著相关性(rho:0.748,p<0.001)。结论:这种使用AS SS-OCT的前房AC细胞自动分析与临床SUN分级评分显示出显著相关性,并提供了作为连续变量的SUN AC分级值。我们的研究结果表明,AC细胞的自动分级可以提高使用AS-OCT图像对AC炎症进行定量评估的准确性,并允许对葡萄膜炎患者的眼前节炎症进行客观、快速的评估。需要进行大规模的进一步研究来验证这种对葡萄膜炎患者眼前节炎症的定量测量方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf5c/9689595/536f2f9fa549/diagnostics-12-02703-g001.jpg

相似文献

6
Anterior chamber cell grading by optical coherence tomography.前房细胞分级的光学相干断层扫描。
Invest Ophthalmol Vis Sci. 2013 Jan 9;54(1):258-65. doi: 10.1167/iovs.12-10477.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验