Suppr超能文献

提高研究透明度的新框架:探索多样性与创新之间的联系。

A novel framework for increasing research transparency: Exploring the connection between diversity and innovation.

作者信息

Wojan Timothy R, Lambert Dayton M

机构信息

Oak Ridge Institute for Science and Education Research Ambassadors Program, National Center for Science and Engineering Statistics, U.S. National Science Foundation, Alexandria, Virginia, United States of America.

Department of Agricultural Economics, Oklahoma State University, Stillwater, Oklahoma, United States of America.

出版信息

PLoS One. 2025 Jan 9;20(1):e0313826. doi: 10.1371/journal.pone.0313826. eCollection 2025.

Abstract

A split sample/dual method research protocol is demonstrated to increase transparency while reducing the probability of false discovery. We apply the protocol to examine whether diversity in ownership teams increases or decreases the likelihood of a firm reporting a novel innovation using data from the 2018 United States Census Bureau's Annual Business Survey. Transparency is increased in three ways: 1) all specification testing and identifying potentially productive models is done in an exploratory subsample that 2) preserves the validity of hypothesis test statistics from de novo estimation in the holdout confirmatory sample with 3) all findings publicly documented in an earlier registered report and in this journal publication. Bayesian estimation procedures that leverage information from the exploratory stage included in the confirmatory stage estimation replace traditional frequentist null hypothesis significance testing. In addition to increasing statistical power by using information from the full sample, Bayesian methods directly estimate a probability distribution for the magnitude of an effect, allowing much richer inference. Estimated magnitudes of diversity along academic discipline, race, ethnicity, and foreign-born status dimensions are positively associated with innovation. A maximally diverse ownership team on these dimensions would be roughly six times more likely to report new-to-market innovation than a homophilic team.

摘要

一种分割样本/双重方法研究方案被证明能提高透明度,同时降低错误发现的概率。我们应用该方案,利用2018年美国人口普查局年度商业调查的数据,来检验所有权团队的多样性是增加还是降低了公司报告一项新颖创新的可能性。透明度通过三种方式得以提高:1)所有的规格测试和识别潜在有效模型都在一个探索性子样本中进行,2)在保留确认样本中从头开始估计时,保持假设检验统计量的有效性,3)所有结果都在一份早期的预注册报告和本期刊发表中公开记录。在确认阶段估计中利用探索阶段信息的贝叶斯估计程序取代了传统的频率主义零假设显著性检验。除了通过使用全样本信息提高统计效力外,贝叶斯方法还直接估计效应大小的概率分布,从而允许进行更丰富的推断。沿着学术学科、种族、民族和外国出生身份维度估计的多样性大小与创新呈正相关。在这些维度上拥有最大多样性的所有权团队报告新上市创新的可能性大约是同质化团队的六倍。

相似文献

1
A novel framework for increasing research transparency: Exploring the connection between diversity and innovation.
PLoS One. 2025 Jan 9;20(1):e0313826. doi: 10.1371/journal.pone.0313826. eCollection 2025.
6
Global Diversity of Authors, Editors, and Journal Ownership Across Subdisciplines of Psychology: Current State and Policy Implications.
Perspect Psychol Sci. 2023 Mar;18(2):358-377. doi: 10.1177/17456916221091831. Epub 2022 Aug 22.
7
Interpreting frequentist hypothesis tests: insights from Bayesian inference.
Can J Anaesth. 2023 Oct;70(10):1560-1575. doi: 10.1007/s12630-023-02557-5. Epub 2023 Oct 4.
8
Beyond 'statistical significance': A nontechnical primer of Bayesian statistics and Bayes factors for health researchers.
J Eval Clin Pract. 2024 Oct;30(7):1218-1226. doi: 10.1111/jep.14032. Epub 2024 Jun 2.
9
Bayesian lesion-deficit inference with Bayes factor mapping: Key advantages, limitations, and a toolbox.
Neuroimage. 2023 May 1;271:120008. doi: 10.1016/j.neuroimage.2023.120008. Epub 2023 Mar 11.
10
Null Hypotheses, Interval Estimation, and Bayesian Analysis.
Otolaryngol Head Neck Surg. 2017 Dec;157(6):919-920. doi: 10.1177/0194599817728898.

本文引用的文献

1
Finding common ground: Understanding and engaging with science mistrust in the Great barrier reef region.
PLoS One. 2024 Aug 16;19(8):e0308252. doi: 10.1371/journal.pone.0308252. eCollection 2024.
2
Big little lies: a compendium and simulation of -hacking strategies.
R Soc Open Sci. 2023 Feb 8;10(2):220346. doi: 10.1098/rsos.220346. eCollection 2023 Feb.
4
Nonreplicable publications are cited more than replicable ones.
Sci Adv. 2021 May 21;7(21). doi: 10.1126/sciadv.abd1705. Print 2021 May.
5
Misinformation in and about science.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.1912444117.
6
Questionable research practices in ecology and evolution.
PLoS One. 2018 Jul 16;13(7):e0200303. doi: 10.1371/journal.pone.0200303. eCollection 2018.
7
The preregistration revolution.
Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2600-2606. doi: 10.1073/pnas.1708274114.
8
Are Psychology Journals Anti-replication? A Snapshot of Editorial Practices.
Front Psychol. 2017 Apr 11;8:523. doi: 10.3389/fpsyg.2017.00523. eCollection 2017.
9
Social science. Promoting transparency in social science research.
Science. 2014 Jan 3;343(6166):30-1. doi: 10.1126/science.1245317.
10
Philosophy and the practice of Bayesian statistics.
Br J Math Stat Psychol. 2013 Feb;66(1):8-38. doi: 10.1111/j.2044-8317.2011.02037.x. Epub 2012 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验