Suppr超能文献

利用欧洲临床营养与代谢学会(ESPEN)的数据对撒哈拉以南非洲地区被忽视热带病进行循证控制:基于模型的土壤传播蠕虫综合地理统计分析

Using ESPEN data for evidence-based control of neglected tropical diseases in sub-Saharan Africa: A comprehensive model-based geostatistical analysis of soil-transmitted helminths.

作者信息

Khaki Jessie Jane, Minnery Mark, Giorgi Emanuele

机构信息

The Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.

Malawi Liverpool Wellcome (MLW) Programme, Blantyre, Malawi.

出版信息

PLoS Negl Trop Dis. 2025 Jan 9;19(1):e0012782. doi: 10.1371/journal.pntd.0012782. eCollection 2025 Jan.

Abstract

BACKGROUND

The Expanded Special Project for the Elimination of Neglected Tropical Diseases (ESPEN) was launched in 2019 by the World Health Organization and African nations to combat Neglected Tropical Diseases (NTDs), including Soil-transmitted helminths (STH), which still affect over 1.5 billion people globally. In this study, we present a comprehensive geostatistical analysis of publicly available STH survey data from ESPEN to delineate inter-country disparities in STH prevalence and its environmental drivers while highlighting the strengths and limitations that arise from the use of the ESPEN data. To achieve this, we also propose the use of calibration validation methods to assess the suitability of geostatistical models for disease mapping at the national scale.

METHODS

We analysed the most recent survey data with at least 50 geo-referenced observations, and modelled each STH species data (hookworm, roundworm, whipworm) separately. Binomial geostatistical models were developed for each country, exploring associations between STH and environmental covariates, and were validated using the non-randomized probability integral transform. We produced pixel-, subnational-, and country-level prevalence maps for successfully calibrated countries. All the results were made publicly available through an R Shiny application.

RESULTS

Among 35 countries with STH data that met our inclusion criteria, the reported data years ranged from 2004 to 2018. Models from 25 countries were found to be well-calibrated. Spatial patterns exhibited significant variation in STH species distribution and heterogeneity in spatial correlation scale (1.14 km to 3,027.44 km) and residual spatial variation variance across countries.

CONCLUSION

This study highlights the utility of ESPEN data in assessing spatial variations in STH prevalence across countries using model-based geostatistics. Despite the challenges posed by data sparsity which limit the application of geostatistical models, the insights gained remain crucial for directing focused interventions and shaping future STH assessment strategies within national control programs.

摘要

背景

2019年,世界卫生组织和非洲国家发起了消除被忽视热带病扩大特别项目(ESPEN),以抗击包括土壤传播蠕虫(STH)在内的被忽视热带病,全球仍有超过15亿人受其影响。在本研究中,我们对ESPEN公开的STH调查数据进行了全面的地理统计分析,以描述各国间STH流行率差异及其环境驱动因素,同时强调使用ESPEN数据的优势和局限性。为此,我们还建议使用校准验证方法来评估地理统计模型在国家尺度疾病绘图中的适用性。

方法

我们分析了至少有50个地理参考观测值的最新调查数据,并分别对每种STH物种数据(钩虫、蛔虫、鞭虫)进行建模。为每个国家建立了二项式地理统计模型,探索STH与环境协变量之间的关联,并使用非随机概率积分变换进行验证。我们为成功校准的国家制作了像素级、次国家级和国家级流行率地图。所有结果通过R Shiny应用程序公开提供。

结果

在35个符合我们纳入标准的有STH数据的国家中,报告的数据年份从2004年到2018年。发现25个国家的模型校准良好。空间模式显示出STH物种分布的显著差异以及空间相关尺度(1.14公里至3027.44公里)和各国剩余空间变异方差的异质性。

结论

本研究强调了ESPEN数据在使用基于模型的地理统计学评估各国STH流行率空间变异方面的效用。尽管数据稀疏带来了挑战,限制了地理统计模型的应用,但所获得的见解对于指导有针对性的干预措施以及塑造国家控制计划内未来的STH评估策略仍然至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33fa/11753640/77b5a1b6b14c/pntd.0012782.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验