Suppr超能文献

应用基于模型的地统计学评估沙眼消除情况。

Using model-based geostatistics for assessing the elimination of trachoma.

机构信息

Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.

Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.

出版信息

PLoS Negl Trop Dis. 2023 Jul 28;17(7):e0011476. doi: 10.1371/journal.pntd.0011476. eCollection 2023 Jul.

Abstract

BACKGROUND

Trachoma is the commonest infectious cause of blindness worldwide. Efforts are being made to eliminate trachoma as a public health problem globally. However, as prevalence decreases, it becomes more challenging to precisely predict prevalence. We demonstrate how model-based geostatistics (MBG) can be used as a reliable, efficient, and widely applicable tool to assess the elimination status of trachoma.

METHODS

We analysed trachoma surveillance data from Brazil, Malawi, and Niger. We developed geostatistical Binomial models to predict trachomatous inflammation-follicular (TF) and trachomatous trichiasis (TT) prevalence. We proposed a general framework to incorporate age and gender in the geostatistical models, whilst accounting for residual spatial and non-spatial variation in prevalence through the use of random effects. We also used predictive probabilities generated by the geostatistical models to quantify the likelihood of having achieved the elimination target in each evaluation unit (EU).

RESULTS

TF and TT prevalence varied considerably by country, with Brazil showing the lowest prevalence and Niger the highest. Brazil and Malawi are highly likely to have met the elimination criteria for TF in each EU, but, for some EUs, there was high uncertainty in relation to the elimination of TT according to the model alone. In Niger, the predicted prevalence varied significantly across EUs, with the probability of having achieved the elimination target ranging from values close to 0% to 100%, for both TF and TT.

CONCLUSIONS

We demonstrated the wide applicability of MBG for trachoma programmes, using data from different epidemiological settings. Unlike the standard trachoma prevalence survey approach, MBG provides a more statistically rigorous way of quantifying uncertainty around the achievement of elimination prevalence targets, through the use of spatial correlation. In addition to the analysis of existing survey data, MBG also provides an approach to identify areas in which more sampling effort is needed to improve EU classification. We advocate MBG as the new standard method for analysing trachoma survey outputs.

摘要

背景

沙眼是全球最常见的传染性致盲原因。目前正在努力在全球范围内消除沙眼这一公共卫生问题。然而,随着患病率的下降,准确预测患病率变得更加具有挑战性。我们展示了如何使用基于模型的地统计学(MBG)作为一种可靠、高效且广泛适用的工具来评估沙眼消除状况。

方法

我们分析了来自巴西、马拉维和尼日尔的沙眼监测数据。我们开发了地统计二项式模型来预测沙眼滤泡性炎症(TF)和沙眼性倒睫(TT)的患病率。我们提出了一个通用框架,在该框架中,将年龄和性别纳入地统计模型中,同时通过使用随机效应来解释患病率的残余空间和非空间变异性。我们还使用地统计模型生成的预测概率来量化每个评估单元(EU)实现消除目标的可能性。

结果

TF 和 TT 的患病率因国家而异,巴西的患病率最低,尼日尔的患病率最高。巴西和马拉维在每个 EU 中极有可能达到 TF 的消除标准,但仅根据模型,对于某些 EU,TT 的消除仍存在高度不确定性。在尼日尔,各 EU 之间的预测患病率差异很大,达到消除目标的概率在 TF 和 TT 中都从接近 0%到 100%不等。

结论

我们使用来自不同流行病学背景的数据展示了 MBG 在沙眼项目中的广泛适用性。与标准的沙眼患病率调查方法不同,MBG 通过使用空间相关性提供了一种更具统计学严谨性的方法来量化消除患病率目标的实现不确定性。除了分析现有调查数据外,MBG 还提供了一种方法来确定需要更多抽样努力的地区,以改善 EU 分类。我们提倡 MBG 作为分析沙眼调查结果的新标准方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fe6/10381061/38453ffe1a6a/pntd.0011476.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验