Centre for Health Informatics, Computing, and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.
Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.
BMC Med Res Methodol. 2024 Nov 29;24(1):294. doi: 10.1186/s12874-024-02420-1.
Soil-transmitted helminthiasis (STH) are a parasitic infection that predominantly affects impoverished regions. Model-based geostatistics (MBG) has been established as a set of modern statistical methods that enable mapping of disease risk in a geographical area of interest. We investigate how the use of remotely sensed covariates can help to improve the predictive inferences on STH prevalence using MBG methods. In particular, we focus on how the covariates impact on the classification of areas into distinct class of STH prevalence.
This study uses secondary data obtained from a sample of 1551 schools in Kenya, gathered through a combination of longitudinal and cross-sectional surveys. We compare the performance of two geostatistical models: one that does not make use of any spatially referenced covariate; and a second model that uses remotely sensed covariates to assist STH prevalence prediction. We also carry out a simulation study in which we compare the performance of the two models in the classifications of areal units with varying sample sizes and prevalence levels.
The model with covariates generated lower levels of uncertainty and was able to classify 88 more districts into prevalence classes than the model without covariates, which instead left those as "unclassified". The simulation study showed that the model with covariates also yielded a higher proportion of correct classification of at least 40% for all sub-counties.
Covariates can substantially reduce the uncertainty of the predictive inference generated from geostatistical models. Using covariates can thus contribute to the design of more effective STH control strategies by reducing sample sizes without compromising the predictive performance of geostatistical models.
土壤传播性蠕虫病(STH)是一种寄生虫感染,主要影响贫困地区。基于模型的地统计学(MBG)已被确立为一套现代统计方法,可用于对感兴趣的地理区域中的疾病风险进行制图。我们研究了如何使用遥感协变量来帮助使用 MBG 方法提高 STH 流行率的预测推断。特别是,我们关注协变量如何影响将地区分类为不同 STH 流行率类别。
本研究使用从肯尼亚 1551 所学校的样本中获得的二手数据,这些数据是通过纵向和横断面调查的组合收集的。我们比较了两种地统计学模型的性能:一种不使用任何空间参考协变量的模型;另一种使用遥感协变量来协助 STH 流行率预测的模型。我们还进行了一项模拟研究,其中我们比较了两种模型在具有不同样本大小和流行率水平的面积单位分类中的性能。
具有协变量的模型生成的不确定性水平较低,并且能够将 88 个以上的地区分类为流行率类别,而没有协变量的模型则将这些地区归类为“未分类”。模拟研究表明,具有协变量的模型还产生了更高比例的正确分类,至少有 40%的分类对于所有分区都是正确的。
协变量可以大大降低从地统计学模型生成的预测推断的不确定性。因此,通过减少样本量而不影响地统计学模型的预测性能,可以为设计更有效的 STH 控制策略做出贡献。