Iida Naoko, Okada Ai, Kobayashi Yoshihisa, Chiba Kenichi, Yatabe Yasushi, Shiraishi Yuichi
Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan.
Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
Nat Commun. 2025 Jan 9;16(1):426. doi: 10.1038/s41467-024-55185-y.
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs). To leverage massive transcriptome sequence data such as those available from the Sequence Read Archive, we develop a novel framework to screen for SSCVs solely using transcriptome data. We apply it to 322,072 publicly available transcriptomes and identify 30,130 SSCVs. Among them, 5121 SSCVs affect disease-causing variants. By utilizing this extensive collection of SSCVs, we reveal the characteristics of Alu exonization via SSCVs, especially the hotspots of SSCVs within Alu sequences and their evolutionary relationships. We discover novel gain-of-function SSCVs in the deep intronic region of the NOTCH1 gene and demonstrate that their activation can be suppressed using splice-switching ASOs. Collectively, we provide a systematic approach for automatically acquiring a registry of SSCVs, which facilitates the elucidation of novel biological mechanisms underlying splicing and serves as a valuable resource for drug discovery. The catalogs of SSCVs identified in this study are accessible on the SSCV DB ( https://sscvdb.io ).
导致异常剪接的基因组变异在遗传疾病和癌症发展中起着重要作用。其中,导致新剪接位点形成的变异(剪接位点创建变异,SSCVs)尤其难以识别,并且在基因组研究中常常被忽视。此外,这些SSCVs经常被认为是使用剪接转换反义寡核苷酸(ASOs)进行治疗的有前景的候选对象。为了利用大规模转录组序列数据,例如可从序列读取存档中获得的数据,我们开发了一种仅使用转录组数据来筛选SSCVs的新框架。我们将其应用于322,072个公开可用的转录组,并识别出30,130个SSCVs。其中,5121个SSCVs影响致病变异。通过利用这一广泛收集的SSCVs,我们揭示了通过SSCVs发生的Alu外显子化的特征,特别是Alu序列内SSCVs的热点及其进化关系。我们在NOTCH1基因的内含子深处区域发现了新的功能获得性SSCVs,并证明可以使用剪接转换ASOs抑制它们的激活。总体而言,我们提供了一种系统方法来自动获取SSCVs的登记册,这有助于阐明剪接背后的新生物学机制,并作为药物发现的宝贵资源。本研究中识别出的SSCVs目录可在SSCV DB(https://sscvdb.io)上获取。