Crouch James J F, Boutelier Timothé, Davis Adam, Shiraz Bhurwani Mohammad Mahdi, Snyder Kenneth V, Papageorgakis Christos, Raguenes Dorian, Ionita Ciprian N
Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY, USA.
Research and Innovation, Olea Medical, La Ciotat, France.
Neuroradiol J. 2025 Jan 9:19714009251313517. doi: 10.1177/19714009251313517.
This study evaluates the efficacy of deep learning models in identifying infarct tissue on computed tomography perfusion (CTP) scans from patients with acute ischemic stroke due to large vessel occlusion, specifically addressing the potential influence of varying noise reduction techniques implemented by different vendors. We analyzed CTP scans from 60 patients who underwent mechanical thrombectomy achieving a modified thrombolysis in cerebral infarction (mTICI) score of 2c or 3, ensuring minimal changes in the infarct core between the initial CTP and follow-up MR imaging. Noise reduction techniques, including principal component analysis (PCA), wavelet, non-local means (NLM), and a no denoising approach, were employed to create hemodynamic parameter maps. Infarct regions identified on follow-up diffusion-weighted imaging (DWI) within 48 hours were co-registered with initial CTP scans and refined with ADC maps to serve as ground truth for training a data-augmented U-Net model. The performance of this convolutional neural network (CNN) was assessed using Dice coefficients across different denoising methods and infarct sizes, visualized through box plots for each parameter map. Our findings show no significant differences in model accuracy between PCA and other denoising methods, with minimal variation in Dice scores across techniques. This study confirms that CNNs are adaptable and capable of handling diverse processing schemas, indicating their potential to streamline diagnostic processes and effectively manage CTP input data quality variations.
本研究评估了深度学习模型在识别因大血管闭塞导致的急性缺血性卒中患者的计算机断层扫描灌注(CTP)图像上梗死组织的疗效,特别探讨了不同供应商实施的不同降噪技术的潜在影响。我们分析了60例接受机械取栓术且改良脑梗死溶栓(mTICI)评分达到2c或3的患者的CTP扫描图像,确保初始CTP扫描与随访磁共振成像之间梗死核心的变化最小。采用降噪技术,包括主成分分析(PCA)、小波变换、非局部均值(NLM)和无去噪方法,来创建血流动力学参数图。在48小时内随访扩散加权成像(DWI)上识别出的梗死区域与初始CTP扫描图像进行配准,并用表观扩散系数(ADC)图进行细化,作为训练数据增强型U-Net模型的地面真值。使用不同去噪方法和梗死大小的Dice系数评估该卷积神经网络(CNN)的性能,并通过每个参数图的箱线图进行可视化。我们的研究结果表明,PCA与其他去噪方法之间在模型准确性上没有显著差异,不同技术的Dice评分变化最小。本研究证实,CNNs具有适应性,能够处理各种处理模式,表明它们有潜力简化诊断过程并有效管理CTP输入数据质量变化。