Tahedl Marlene, Bogdahn Ulrich, Wimmer Bernadette, Hedderich Dennis M, Kirschke Jan S, Zimmer Claus, Wiestler Benedikt
Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
Department of Neurology, University Hospital, School of Medicine, University of Regensburg, Regensburg, Germany.
Brain Behav. 2025 Jan;15(1):e70289. doi: 10.1002/brb3.70289.
Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment.
Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression. Using MRI and clinical data from 135 recently diagnosed PD patients from the Parkinson's Progression Markers Initiative, we first defined an extremity-specific motor score. We then identified cortical regions corresponding to "extremity functions" and restricted MAP, respectively, and contrasted the explanatory power of the extremity-specific MAP to unrestricted MAP. As control conditions, domain-related but less specific general motor function and nondomain-specific cognitive scores were considered. We also tested the predictive power of the restricted MAP in predicting disease progression over 1 and 3 years using support vector machines. The restricted, extremity-specific MAP yielded higher explanatory power for extremity-specific motor function at baseline as opposed to the unrestricted, whole-brain MAP. On the contrary, for general motor function, the unrestricted, whole-brain MAP yielded higher power.
No associations were found for cognitive function. The extremity-specific MAP predicted extremity-specific motor progression over 1 and 3 years above chance level. The MAP framework allows for domain-specific prediction of customized PD disease progression, which can inform machine learning, thereby contributing to personalized PD patient care.
由于帕金森病(PD)临床表现高度个体化,个性化患者护理可能需要对神经功能障碍进行特定领域的评估。磁共振成像(MRI)研究证据表明,异质性临床表现对应异质性皮质疾病负担,这表明对皮质病理学进行定制的高分辨率评估可作为特定领域评估的候选生物标志物。
在此,我们研究了最近提出的镶嵌方法(MAP)的潜力,MAP是一种用于根据具有人群代表性的队列量化个体皮质疾病负担的规范框架,用于预测特定领域的临床进展。利用帕金森病进展标志物倡议组织中135例新诊断的PD患者的MRI和临床数据,我们首先定义了一个特定肢体运动评分。然后,我们分别确定与“肢体功能”相对应的皮质区域并限制MAP,并将特定肢体MAP与非限制MAP的解释力进行对比。作为对照条件,考虑了与领域相关但特异性较低的一般运动功能和非领域特异性认知评分。我们还使用支持向量机测试了受限MAP在预测1年和3年疾病进展方面的预测能力。与非限制的全脑MAP相比,受限的特定肢体MAP在基线时对特定肢体运动功能具有更高的解释力。相反,对于一般运动功能,非限制的全脑MAP具有更高的解释力。
未发现与认知功能相关。特定肢体MAP在1年和3年以上预测特定肢体运动进展高于偶然水平。MAP框架允许对定制的PD疾病进展进行特定领域的预测,这可为机器学习提供信息,从而有助于个性化的PD患者护理。