López-Gómez P, Mehwish N, Marchán V, Ginebra M P, Mas-Moruno C
Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Escola d'Enginyeria Barcelona Est (EEBE) and Institute for Research and Innovation in Health (IRIS), Universitat Politècnica de Catalunya BarcelonaTech (UPC), Barcelona, Spain.
Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.
Chemistry. 2025 Jul 17;31(40):e202500975. doi: 10.1002/chem.202500975. Epub 2025 Jun 27.
Bacterial colonization on biomaterials is a major issue, leading to approximately 20% of implant failures due to infection and biofilm formation. To address this, peptide-based hydrogels incorporating tailored bioactive peptides have emerged as promising candidates for applications in tissue engineering and infection control. Here, we have designed peptide sequences that incorporate i) a self-assembling unit (SaU) and ii) bioactive motifs, including the well-known arginine-glycine-aspartate (RGD) sequence to promote cell adhesion or an antimicrobial peptide derived from lactoferrin (LF) to exhibit antibacterial properties. To aid in the gelation, these peptides were combined with hyaluronic acid (HA), rendering peptide-based hydrogels without the need for additional external assembly triggers, simplifying their application in biomedical contexts. This protocol allowed for a spontaneous formation of a 3D fibrillar network, with structural and physicochemical properties suitable for tissue engineering. The biological evaluation revealed the ability of RGD-based hydrogels to increase the adhesion and spreading of osteoblastic cells compared to controls, while the LF-based hydrogels significantly reduced the viability and attachment of both Gram-positive and Gram-negative strains, clearly affecting bacterial morphology. This report demonstrates the feasibility of this technology to produce hydrogels incorporating distinct biological cues, highlighting their potential as versatile biomaterials to address diverse biomedical challenges.
生物材料上的细菌定植是一个主要问题,约20%的植入失败是由感染和生物膜形成导致的。为了解决这一问题,包含定制生物活性肽的基于肽的水凝胶已成为组织工程和感染控制应用中很有前景的候选材料。在此,我们设计了包含以下两种成分的肽序列:i)一个自组装单元(SaU)和ii)生物活性基序,包括促进细胞黏附的著名的精氨酸-甘氨酸-天冬氨酸(RGD)序列,或源自乳铁蛋白(LF)的具有抗菌特性的抗菌肽。为了有助于凝胶化,这些肽与透明质酸(HA)结合,使得基于肽的水凝胶无需额外的外部组装触发因素,简化了它们在生物医学环境中的应用。该方案允许自发形成三维纤维网络,其结构和物理化学性质适合组织工程。生物学评估表明,与对照相比,基于RGD的水凝胶能够增加成骨细胞的黏附和铺展,而基于LF的水凝胶显著降低了革兰氏阳性和革兰氏阴性菌株的活力和附着,明显影响细菌形态。本报告证明了该技术生产包含不同生物信号的水凝胶的可行性,突出了它们作为通用生物材料应对各种生物医学挑战的潜力。
Acc Chem Res. 2025-6-17
ACS Appl Mater Interfaces. 2025-6-18
Front Bioeng Biotechnol. 2024-11-12
Mater Horiz. 2024-4-22
Gels. 2023-8-14
Biosensors (Basel). 2023-7-29
Front Bioeng Biotechnol. 2023-6-1
Polymers (Basel). 2023-2-25
Proc Natl Acad Sci U S A. 2023-2-21