Malkin Albert, Riosa Priscilla Burnham, Mullins Laura, Thompson Kristi, Kretschmer Allison
Faculty of Education, Western University, 1137 Western Road, London, Ontario N6G 1G7 Canada.
Applied Disability Studies, Brock University, St. Catherines, ON Canada.
Behav Anal Pract. 2024 Apr 1;17(4):1104-1112. doi: 10.1007/s40617-024-00929-x. eCollection 2024 Dec.
Naturalistic observation of verbal behavior on social media is a method of gathering data on the acceptability of topics of social interest. In other words, online social opinion may be a modern-day measure of social validity. We sought to gain an objective understanding of online discourse related to the field of applied behavior analysis (ABA). We analyzed Twitter posts related to ABA (e.g., #ABA, #BehaviorAnalysis, #appliedbehavioranalysis). Our initial sample consisted of 119,911 tweets from 2012 to 2022. We selected a random subset ( = 11,000) for further analysis using a stratified sampling procedure to ensure that tweets across years were adequately represented. Two observers were trained to code tweets for relevance and sentiment toward the field. A total of 5,408 relevant tweets were identified and analyzed, with an arithmetic mean of 492 tweets per year. Tweets were categorized as having neutral (51.41%), positive (43.81%), or negative (4.79%) sentiment. Negative sentiment tweets received approximately three times higher engagement scores compared to positive and neutral tweets. Positive sentiment tweets commonly used hashtags related to special education, therapy, behavior analysis, autism, and specific individuals. Negative sentiment tweets focused on the harmful effects of ABA, disability, variations of ABA, and promoting alternatives to ABA. Our results suggest that there is a small but vocal minority that has the potential to shape the narrative on ABA. We suggest a path forward for behavior analysts in the study of the online discourse on ABA.
对社交媒体上言语行为的自然观察是一种收集有关社会关注话题可接受性数据的方法。换句话说,在线社会舆论可能是社会效度的一种现代衡量标准。我们试图对与应用行为分析(ABA)领域相关的在线话语有一个客观的理解。我们分析了与ABA相关的推特帖子(例如,#ABA、#行为分析、#应用行为分析)。我们的初始样本包括2012年至2022年的119,911条推文。我们使用分层抽样程序选择了一个随机子集(=11,000)进行进一步分析,以确保各年份的推文都有充分的代表性。两名观察者接受了培训,对推文与该领域的相关性和情感进行编码。总共识别并分析了5408条相关推文,平均每年492条推文。推文被分类为具有中性(51.41%)、积极(43.81%)或消极(4.79%)情感。与积极和中性推文相比,消极情感推文获得的参与度得分大约高三倍。积极情感推文通常使用与特殊教育、治疗、行为分析、自闭症和特定个人相关的主题标签。消极情感推文关注ABA的有害影响、残疾、ABA的变体以及推广ABA的替代方法。我们的结果表明,存在一小部分但声音较大的少数群体,他们有可能塑造关于ABA的叙述。我们为行为分析师在研究ABA的在线话语方面提出了一条前进的道路。