Azri Afef, Amar Marwa Ben, Walha Khaled, Fontàs Clàudia, Conde-González José Elías, Salvadó Victoria, Peña-Méndez Eladia M
Department de Química, Facultat de Ciències, Universitat de Girona, C/Mª Aurèlia Capmany, 69, 17003 Girona, Spain.
Laboratory of Material Sciences and Environment, Faculty of Sciences, University of Sfax, Route de la Soukra Km 3.5, BP 1171, Sfax 3000, Tunisia.
Nanomaterials (Basel). 2024 Dec 29;15(1):36. doi: 10.3390/nano15010036.
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF. Despite their similarities in composition, they exhibit distinct structural characteristics in their porosity, pore size, and surface areas, which affected the adsorption processes. The kinetic data of the adsorption of As(III) and As(V) by both Fe-MOFs fitted the pseudo second-order model well, with the kinetic constant being higher for BasoliteF300 given its higher porosity. Intraparticle diffusion was, in both cases, the rate controlling step with the contribution of film diffusion in the adsorption processes, which achieved equilibrium after 1 h. The maximum adsorption capacity for As(V), 41.66 mg g, was obtained with BasoliteF300 at the 6.5-10 pH range, whereas Nano-{Fe-BTC} showed a different behaviour as maximum adsorption (14.99 mg g) was obtained at pH 2. However, both adsorbents exhibited the same performance for As(III) adsorption, which is not adsorbed at pH < 9. The Langmuir adsorption isotherm model fitted well for As(III) and As(V) adsorption by Nano-{Fe-BTC} and As(III) by BasoliteF300, whereas the Freundlich model fitted best for As(V) given its superior structural properties.
水中的砷污染危及全球数百万人的健康,对某些国家和地区的影响尤为严重。由于铁基金属有机框架(MOF)的稳定性和吸附性能,人们对其用于去除无机砷物种的兴趣日益增加。在本研究中,研究了一种合成的纳米-{Fe-BTC} MOF(包含由均苯三甲酸连接体连接的氧化铁八面体链)对As(III)和As(V)物种的吸附性能,并与商业BasoliteF300 MOF进行了比较。尽管它们在组成上相似,但在孔隙率、孔径和表面积方面表现出不同的结构特征,这影响了吸附过程。两种铁基MOF对As(III)和As(V)的吸附动力学数据都很好地拟合了准二级模型,鉴于BasoliteF300的孔隙率较高,其动力学常数更高。在这两种情况下,颗粒内扩散都是吸附过程中的速率控制步骤,同时存在膜扩散的贡献,吸附在1小时后达到平衡。在6.5-10的pH范围内,BasoliteF300对As(V)的最大吸附容量为41.66 mg/g,而纳米-{Fe-BTC}表现出不同的行为,在pH 2时获得最大吸附量(14.99 mg/g)。然而,两种吸附剂对As(III)的吸附性能相同,在pH < 9时不吸附As(III)。Langmuir吸附等温线模型很好地拟合了纳米-{Fe-BTC}对As(III)和As(V)的吸附以及BasoliteF300对As(III)的吸附,而Freundlich模型最适合As(V)的吸附,因为其具有优越的结构性能。