Sapnik Adam F, Bechis Irene, Collins Sean M, Johnstone Duncan N, Divitini Giorgio, Smith Andrew J, Chater Philip A, Addicoat Matthew A, Johnson Timothy, Keen David A, Jelfs Kim E, Bennett Thomas D
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, London, UK.
Nat Commun. 2021 Apr 6;12(1):2062. doi: 10.1038/s41467-021-22218-9.
Amorphous metal-organic frameworks (MOFs) are an emerging class of materials. However, their structural characterisation represents a significant challenge. Fe-BTC, and the commercial equivalent Basolite® F300, are MOFs with incredibly diverse catalytic ability, yet their disordered structures remain poorly understood. Here, we use advanced electron microscopy to identify a nanocomposite structure of Fe-BTC where nanocrystalline domains are embedded within an amorphous matrix, whilst synchrotron total scattering measurements reveal the extent of local atomic order within Fe-BTC. We use a polymerisation-based algorithm to generate an atomistic structure for Fe-BTC, the first example of this methodology applied to the amorphous MOF field outside the well-studied zeolitic imidazolate framework family. This demonstrates the applicability of this computational approach towards the modelling of other amorphous MOF systems with potential generality towards all MOF chemistries and connectivities. We find that the structures of Fe-BTC and Basolite® F300 can be represented by models containing a mixture of short- and medium-range order with a greater proportion of medium-range order in Basolite® F300 than in Fe-BTC. We conclude by discussing how our approach may allow for high-throughput computational discovery of functional, amorphous MOFs.
非晶态金属有机框架材料(MOFs)是一类新兴材料。然而,其结构表征是一项重大挑战。Fe-BTC以及与之商业等效的Basolite® F300是具有极其多样催化能力的MOFs,但它们的无序结构仍知之甚少。在此,我们使用先进的电子显微镜来识别Fe-BTC的一种纳米复合结构,其中纳米晶域嵌入在非晶态基质中,同时同步加速器全散射测量揭示了Fe-BTC内部局部原子有序程度。我们使用基于聚合的算法为Fe-BTC生成原子结构,这是该方法应用于研究充分的沸石咪唑酯框架家族之外的非晶态MOF领域的首个实例。这证明了这种计算方法对其他非晶态MOF系统建模的适用性,可能对所有MOF化学组成和连接方式具有普遍性。我们发现,Fe-BTC和Basolite® F300的结构可以用包含短程和中程有序混合物的模型来表示,且Basolite® F300中中程有序的比例比Fe-BTC中的更大。我们通过讨论我们的方法如何实现功能性非晶态MOFs的高通量计算发现来结束本文。