Zhang Mingjie, Makhlooghiazad Faezeh, Pal Urbi, Maleki Mahin, Kondou Shinji, Elia Giuseppe Antonio, Gerbaldi Claudio, Forsyth Maria
GAME Lab, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
Institute for Frontier Materials (IFM), Deakin University, Burwood, Victoria 3125, Australia.
ACS Appl Polym Mater. 2024 Dec 1;6(23):14469-14476. doi: 10.1021/acsapm.4c02520. eCollection 2024 Dec 13.
Poly(ethylene oxide)-(PEO-based solid polymer electrolytes (SPEs) are regarded as excellent candidates for solid-state lithium metal batteries (SSLMBs) due to their inherent safety advantages, processability, low cost, and excellent Li+ ion solvation. However, they suffer from limited oxidation stability (up to 4 V vs Li/Li). In this study, a crosslinked polymer-in-concentrated ionic liquid (PCIL) SPE consisting of PEO, -propyl--methylpyrrolidinium bis(fluorosulfonyl)imide (CmpyrFSI) ionic liquid (IL), and lithium bis(fluorosulfonyl)imide (LiFSI) salt is developed. The adopted UV-crosslinking strategy synergistically reduces PEO crystallinity while increasing the amount of encompassed lithium salt and IL and improves PEO oxidative stability, therefore leading to enhanced electrochemical performance. The physical and electrochemical properties of both linear and crosslinked SPEs are explored and compared. The designed cross-linked SPEs exhibited a promisingly high oxidative stability of 4.9 V vs Li/Li and high ambient temperature ionic conductivity of 4 × 10 S cm. Stable and reversible lithium plating/stripping is demonstrated in symmetrical Li||Li cells over hundreds of hours. High-loading solid-state lithium iron phosphate (LFP)||Li cells show favorable cycling with over 90% capacity retention at 0.1C over 100 cycles at 50 °C. High voltage solid-state lithium manganese oxide (LMO)||Li cells exhibit promising cycling with a 93% capacity retention at a 0.2 C rate over 50 cycles at 50 °C. Thus, the combination of concentrated ionic liquid electrolytes in a crosslinked PEO-based matrix enables a pathway for designing high-performing SPEs for high energy density solid-state LMBs.
聚环氧乙烷(PEO)基固态聚合物电解质(SPEs)因其固有的安全优势、可加工性、低成本以及出色的锂离子溶剂化能力,被视为固态锂金属电池(SSLMBs)的理想候选材料。然而,它们的氧化稳定性有限(相对于Li/Li最高可达4V)。在本研究中,开发了一种由PEO、1-丙基-1-甲基吡咯烷鎓双(氟磺酰)亚胺(CmpyrFSI)离子液体(IL)和双(氟磺酰)亚胺锂(LiFSI)盐组成的交联聚合物-浓离子液体(PCIL)SPE。所采用的紫外交联策略协同降低了PEO的结晶度,同时增加了所含锂盐和离子液体的量,并提高了PEO的氧化稳定性,从而提升了电化学性能。对线性和交联SPEs的物理和电化学性质进行了探索和比较。设计的交联SPEs表现出相对于Li/Li高达4.9V的有望的高氧化稳定性以及4×10⁻³S cm⁻¹的高环境温度离子电导率。在对称的Li||Li电池中,数百小时内展示了稳定且可逆的锂电镀/剥离。高负载固态磷酸铁锂(LFP)||Li电池在50℃下以0.1C的电流密度循环100次,容量保持率超过90%,显示出良好的循环性能。高电压固态锂锰氧化物(LMO)||Li电池在50℃下以0.2C的电流密度循环50次,容量保持率为93%,表现出有前景的循环性能。因此,在交联的PEO基基质中结合浓离子液体电解质为设计用于高能量密度固态锂金属电池的高性能SPEs提供了一条途径。