Turgut Özgün, Müller Philip, Hager Paul, Shit Suprosanna, Starck Sophie, Menten Martin J, Martens Eimo, Rueckert Daniel
School of Computation, Information and Technology, Technical University of Munich, Germany; School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany.
School of Computation, Information and Technology, Technical University of Munich, Germany; School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Germany.
Med Image Anal. 2025 Apr;101:103451. doi: 10.1016/j.media.2024.103451. Epub 2025 Jan 4.
Cardiovascular diseases (CVD) can be diagnosed using various diagnostic modalities. The electrocardiogram (ECG) is a cost-effective and widely available diagnostic aid that provides functional information of the heart. However, its ability to classify and spatially localise CVD is limited. In contrast, cardiac magnetic resonance (CMR) imaging provides detailed structural information of the heart and thus enables evidence-based diagnosis of CVD, but long scan times and high costs limit its use in clinical routine. In this work, we present a deep learning strategy for cost-effective and comprehensive cardiac screening solely from ECG. Our approach combines multimodal contrastive learning with masked data modelling to transfer domain-specific information from CMR imaging to ECG representations. In extensive experiments using data from 40,044 UK Biobank subjects, we demonstrate the utility and generalisability of our method for subject-specific risk prediction of CVD and the prediction of cardiac phenotypes using only ECG data. Specifically, our novel multimodal pre-training paradigm improves performance by up to 12.19% for risk prediction and 27.59% for phenotype prediction. In a qualitative analysis, we demonstrate that our learned ECG representations incorporate information from CMR image regions of interest. Our entire pipeline is publicly available at https://github.com/oetu/MMCL-ECG-CMR.
心血管疾病(CVD)可以通过多种诊断方式进行诊断。心电图(ECG)是一种经济高效且广泛可用的诊断辅助手段,可提供心脏的功能信息。然而,其对CVD进行分类和空间定位的能力有限。相比之下,心脏磁共振(CMR)成像可提供心脏的详细结构信息,从而实现基于证据的CVD诊断,但长扫描时间和高成本限制了其在临床常规中的应用。在这项工作中,我们提出了一种仅从心电图进行经济高效且全面的心脏筛查的深度学习策略。我们的方法将多模态对比学习与掩码数据建模相结合,以将特定领域的信息从CMR成像转移到ECG表示中。在使用来自40044名英国生物银行受试者的数据进行的广泛实验中,我们证明了我们的方法在仅使用ECG数据进行CVD个体特异性风险预测和心脏表型预测方面的实用性和通用性。具体而言,我们新颖的多模态预训练范式在风险预测方面将性能提高了高达12.19%,在表型预测方面提高了27.59%。在定性分析中,我们证明了我们学习到的ECG表示包含了来自CMR图像感兴趣区域的信息。我们的整个管道可在https://github.com/oetu/MMCL-ECG-CMR上公开获取。