Suppr超能文献

基于大语言模型的心电图双注意力网络用于心力衰竭风险预测

Large Language Model-informed ECG Dual Attention Network for Heart Failure Risk Prediction.

作者信息

Chen Chen, Li Lei, Beetz Marcel, Banerjee Abhirup, Gupta Ramneek, Grau Vicente

机构信息

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford; Imperial College London; University of Sheffield, Sheffield.

Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford; University of Southampton.

出版信息

IEEE Trans Big Data. 2025 Jun;11(3):948-960. doi: 10.1109/TBDATA.2025.3536922.

Abstract

Heart failure (HF) poses a significant public health challenge, with a rising global mortality rate. Early detection and prevention of HF could significantly reduce its impact. We introduce a novel methodology for predicting HF risk using 12-lead electrocardiograms (ECGs). We present a novel, lightweight dual attention ECG network designed to capture complex ECG features essential for early HF risk prediction, despite the notable imbalance between low and high-risk groups. This network incorporates a cross-lead attention module and 12 lead-specific temporal attention modules, focusing on cross-lead interactions and each lead's local dynamics. To further alleviate model overfitting, we leverage a large language model (LLM) with a public ECG-Report dataset for pretraining on an ECG-Report alignment task. The network is then fine-tuned for HF risk prediction using two specific cohorts from the UK Biobank study, focusing on patients with hypertension (UKB-HYP) and those who have had a myocardial infarction (UKB-MI). The results reveal that LLM-informed pre-training substantially enhances HF risk prediction in these cohorts. The dual attention design not only improves interpretability but also predictive accuracy, outperforming existing competitive methods with C-index scores of 0.6349 for UKB-HYP and 0.5805 for UKB-MI. This demonstrates our method's potential in advancing HF risk assessment with clinical complex ECG data.

摘要

心力衰竭(HF)对公共卫生构成了重大挑战,全球死亡率不断上升。早期检测和预防HF可显著降低其影响。我们介绍了一种使用12导联心电图(ECG)预测HF风险的新方法。我们提出了一种新颖的轻量级双注意力ECG网络,旨在捕捉早期HF风险预测所需的复杂ECG特征,尽管低风险和高风险组之间存在明显的不平衡。该网络包含一个跨导联注意力模块和12个导联特定的时间注意力模块,专注于跨导联交互和每个导联的局部动态。为了进一步缓解模型过拟合,我们利用一个大型语言模型(LLM)和一个公共ECG报告数据集,在ECG报告对齐任务上进行预训练。然后,使用来自英国生物银行研究的两个特定队列,对网络进行微调以预测HF风险,重点关注高血压患者(UKB-HYP)和心肌梗死患者(UKB-MI)。结果表明,基于LLM的预训练显著提高了这些队列中的HF风险预测。双注意力设计不仅提高了可解释性,还提高了预测准确性,在UKB-HYP队列中的C指数得分为0.6349,在UKB-MI队列中的C指数得分为0.5805,优于现有的竞争方法。这证明了我们的方法在利用临床复杂ECG数据推进HF风险评估方面的潜力。

相似文献

引用本文的文献

本文引用的文献

5
Large language models encode clinical knowledge.大语言模型编码临床知识。
Nature. 2023 Aug;620(7972):172-180. doi: 10.1038/s41586-023-06291-2. Epub 2023 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验