Suppr超能文献

生物医学数据科学中可重复性人工智能面临的挑战。

Challenges of reproducible AI in biomedical data science.

作者信息

Han Henry

机构信息

The Laboratory of Data Science and Artificial Intelligence Innovation, Department of Computer Science, School of Engineering and Computer Science, Baylor University, Waco, TX, 76798, USA.

出版信息

BMC Med Genomics. 2025 Jan 10;18(Suppl 1):8. doi: 10.1186/s12920-024-02072-6.

Abstract

Artificial intelligence (AI) is revolutionizing biomedical data science at an unprecedented pace, transforming various aspects of the field with remarkable speed and depth. However, a critical issue remains unclear: how reproducible are the AI models and systems employed in biomedical data science? In this study, we examine the challenges of AI reproducibility by analyzing the factors influenced by data, model, and learning complexities, as well as through a game-theoretical perspective. While adherence to reproducibility standards is essential for the long-term advancement of AI, the conflict between following these standards and aligning with researchers' personal goals remains a significant hurdle in achieving AI reproducibility.

摘要

人工智能(AI)正以前所未有的速度彻底改变生物医学数据科学,以前所未有的速度和深度改变该领域的各个方面。然而,一个关键问题仍不明确:生物医学数据科学中使用的人工智能模型和系统的可重复性如何?在本研究中,我们通过分析受数据、模型和学习复杂性影响的因素,并从博弈论的角度来审视人工智能可重复性面临的挑战。虽然遵守可重复性标准对人工智能的长期发展至关重要,但遵循这些标准与符合研究人员个人目标之间的冲突仍然是实现人工智能可重复性的一个重大障碍。

相似文献

4
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.人工智能驱动的抗菌肽发现:挖掘与生成
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.

引用本文的文献

3
Statistical Rigor and Reproducibility in the AI Era.人工智能时代的统计严谨性与可重复性。
Balkan Med J. 2025 Sep 1;42(5):386-387. doi: 10.4274/balkanmedj.galenos.2025.2025.040825. Epub 2025 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验