Abshari Fatemeh, Paulsen Moritz, Veziroglu Salih, Vahl Alexander, Gerken Martina
Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Molecules. 2024 Dec 30;30(1):99. doi: 10.3390/molecules30010099.
Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.e., the removal of exuberant axonal connections, is essential in network remodeling. We propose the photocatalytic growth and chemical dissolution of gold lines as a building block for neuromorphic computing mimicking axon growth and pruning. We predefine photocatalytic growth areas on a surface by structuring titanium dioxide (TiO) patterns. Placing the samples in a gold chloride (HAuCl) precursor solution, we achieve the controlled growth of gold microstructures along the edges of the indium tin oxide (ITO)/TiO patterns under ultraviolet (UV) illumination. A potassium iodide (KI) solution is employed to dissolve the gold microstructures. We introduce a real-time monitoring setup based on an optical transmission microscope. We successfully observe both the growth and dissolution processes. Additionally, scanning electron microscopy (SEM) analysis confirms the morphological changes before and after dissolution, with dissolution rates closely aligned to the growth rates. These findings demonstrate the potential of this approach to emulate dynamic biological processes, paving the way for future applications in adaptive neuromorphic systems.
生物神经回路基于兴奋性和抑制性事件的相互作用来实现功能。轴突在神经回路中形成远程信息高速公路。轴突修剪,即去除多余的轴突连接,在网络重塑中至关重要。我们提出将金线的光催化生长和化学溶解作为模仿轴突生长和修剪的神经形态计算的一个构建模块。我们通过构建二氧化钛(TiO₂)图案在表面预定义光催化生长区域。将样品置于氯化金(HAuCl₄)前驱体溶液中,在紫外(UV)光照下,我们实现了金微结构沿着氧化铟锡(ITO)/TiO₂图案的边缘可控生长。使用碘化钾(KI)溶液来溶解金微结构。我们引入了基于光学透射显微镜的实时监测装置。我们成功观察到了生长和溶解过程。此外,扫描电子显微镜(SEM)分析证实了溶解前后的形态变化,溶解速率与生长速率紧密匹配。这些发现证明了这种方法模拟动态生物过程的潜力,为未来在自适应神经形态系统中的应用铺平了道路。