Suppr超能文献

通过电解质门控实现全局连接的神经形态器件架构。

Neuromorphic device architectures with global connectivity through electrolyte gating.

机构信息

Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France.

出版信息

Nat Commun. 2017 May 17;8:15448. doi: 10.1038/ncomms15448.

Abstract

Information processing in the brain takes place in a network of neurons that are connected with each other by an immense number of synapses. At the same time, neurons are immersed in a common electrochemical environment, and global parameters such as concentrations of various hormones regulate the overall network function. This computational paradigm of global regulation, also known as homeoplasticity, has important implications in the overall behaviour of large neural ensembles and is barely addressed in neuromorphic device architectures. Here, we demonstrate the global control of an array of organic devices based on poly(3,4ethylenedioxythiophene):poly(styrene sulf) that are immersed in an electrolyte, a behaviour that resembles homeoplasticity phenomena of the neural environment. We use this effect to produce behaviour that is reminiscent of the coupling between local activity and global oscillations in the biological neural networks. We further show that the electrolyte establishes complex connections between individual devices, and leverage these connections to implement coincidence detection. These results demonstrate that electrolyte gating offers significant advantages for the realization of networks of neuromorphic devices of higher complexity and with minimal hardwired connectivity.

摘要

大脑中的信息处理发生在由大量突触相互连接的神经元网络中。与此同时,神经元沉浸在共同的电化学环境中,而各种激素的浓度等全局参数调节整个网络功能。这种被称为同形可塑性的全局调节计算范式对大型神经网络的整体行为有重要影响,但在神经形态器件架构中几乎没有得到解决。在这里,我们展示了浸入电解质中的基于聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)的有机器件阵列的全局控制,这种行为类似于神经环境中的同形可塑性现象。我们利用这种效应产生类似于生物神经网络中局部活动和全局振荡之间耦合的行为。我们进一步表明,电解质在各个器件之间建立了复杂的连接,并利用这些连接来实现符合检测。这些结果表明,电解质门控为实现更复杂的神经形态器件网络提供了显著优势,同时具有最小的硬连线连接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14a9/5442355/bbba057e983a/ncomms15448-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验