Xiao Jing, Zhang Yuan, Du Xin, Li Qiangzi, Wang Hongyan, Wang Yueting, Xu Jingyuan, Dong Yong, Shen Yunqi, Yan Sifeng, Gong Shuguang, Hu Haoxuan
Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China.
College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
Plants (Basel). 2024 Dec 26;14(1):39. doi: 10.3390/plants14010039.
Accurate crop density estimation is critical for effective agricultural resource management, yet existing methods face challenges due to data acquisition difficulties and low model usability caused by inconsistencies between optical and radar imagery. This study presents a novel approach to maize density estimation by integrating optical and radar data, addressing these challenges with a unique mapping strategy. The strategy combines available data selection, key feature extraction, and optimization to improve accuracy across diverse growth stages. By identifying critical features for maize density and incorporating machine learning to explore optimal feature combinations, we developed a multi-temporal model that enhances estimation accuracy, particularly during leaf development, stem elongation, and tasseling stages (R = 0.602, RMSE = 0.094). Our approach improves performance over single-temporal models, and successful maize density maps were generated for the three typical demonstration counties. This work represents an advancement in large-scale crop density estimation, with the potential to expand to other regions and support precision agriculture efforts, offering a foundation for future research on optimizing agricultural resource management.
准确的作物密度估计对于有效的农业资源管理至关重要,但由于数据采集困难以及光学和雷达图像之间的不一致导致模型可用性较低,现有方法面临挑战。本研究提出了一种通过整合光学和雷达数据来估计玉米密度的新方法,采用独特的映射策略应对这些挑战。该策略结合了可用数据选择、关键特征提取和优化,以提高不同生长阶段的准确性。通过识别玉米密度的关键特征并纳入机器学习以探索最佳特征组合,我们开发了一个多时间模型,提高了估计准确性,特别是在叶片发育、茎伸长和抽穗阶段(R = 0.602,RMSE = 0.094)。我们的方法比单时间模型性能更优,并为三个典型示范县生成了成功的玉米密度图。这项工作代表了大规模作物密度估计的进展,有可能扩展到其他地区并支持精准农业工作,为未来优化农业资源管理的研究奠定基础。