College of Agronomy and Biotechnology, China Agricultural University, 100193, Beijing, China.
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, 14412, Potsdam, Germany.
Nat Commun. 2023 May 6;14(1):2637. doi: 10.1038/s41467-023-38355-2.
Population growth and economic development in China has increased the demand for food and animal feed, raising questions regarding China's future maize production self-sufficiency. Here, we address this challenge by combining data-driven projections with a machine learning method on data from 402 stations, with data from 87 field experiments across China. Current maize yield would be roughly doubled with the implementation of optimal planting density and management. In the 2030 s, we estimate a 52% yield improvement through dense planting and soil improvement under a high-end climate forcing Shared Socio-Economic Pathway (SSP585), compared with a historical climate trend. Based on our results, yield gains from soil improvement outweigh the adverse effects of climate change. This implies that China can be self-sufficient in maize by using current cropping areas. Our results challenge the view of yield stagnation in most global areas and provide an example of how food security can be achieved with optimal crop-soil management under future climate change scenarios.
中国的人口增长和经济发展增加了对食物和动物饲料的需求,这引发了人们对中国未来玉米生产自给自足的质疑。在这里,我们通过将数据驱动的预测与机器学习方法相结合,利用来自中国 402 个站点的数据以及来自 87 个田间实验的数据,应对这一挑战。通过实施最佳种植密度和管理,目前的玉米产量将大致翻一番。在 2030 年代,我们估计在高排放共享社会经济路径(SSP585)下,通过密植和土壤改良,与历史气候趋势相比,玉米产量将提高 52%。基于我们的结果,土壤改良带来的产量增长超过了气候变化的不利影响。这意味着,中国可以通过使用现有的耕地面积实现玉米自给自足。我们的研究结果挑战了大多数全球地区玉米产量停滞不前的观点,并为在未来气候变化情景下如何通过优化作物-土壤管理实现粮食安全提供了一个范例。