Suppr超能文献

多组学研究揭示了脱落酸调控的苯丙烷生物合成途径对 Pall 中紫外线 B 反应的影响。

Multi-Omics Research Reveals the Effects of the ABA-Regulated Phenylpropanoid Biosynthesis Pathway on the UV-B Response in Pall.

作者信息

Yu Wang, Zhou Xiangru, Meng Jinhao, Zhou Xiaofu, Xu Hongwei

机构信息

Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.

出版信息

Plants (Basel). 2025 Jan 1;14(1):101. doi: 10.3390/plants14010101.

Abstract

The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Pall. () to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences 's metabolic responses under UV-B stress. was treated with UV-B radiation and exogenous ABA for widely targeted metabolomics, transcriptomics, and proteomics assays, and relevant chlorophyll fluorescence parameters were also determined. It was observed that UV-B stress negatively impacts the plant's photosynthetic machinery, disrupting multiple metabolic processes. Multi-omics analysis revealed that ABA application mitigates the detrimental effects of UV-B on photosynthesis and bolsters the plant's antioxidant defenses. Additionally, both UV-B exposure and ABA treatment significantly influenced the phenylpropanoid biosynthesis pathway, activating key enzyme genes, such as 4CL, CCR, and HCT. The study also highlighted the MYB-bHLH-WD40 (MBW) complex's role in regulating this pathway and its interaction with ABA signaling components. These findings underscore ABA's crucial function in improving plant resistance to UV-B stress and offer novel insights into plant stress biology.

摘要

臭氧层日益枯竭导致紫外线B(UV-B)辐射增加,促使像高山 Pall.()这样的植物适应这些恶劣条件。本研究探讨了脱落酸(ABA)信号传导如何影响 在UV-B胁迫下的代谢反应。用UV-B辐射和外源ABA处理 以进行广泛靶向代谢组学、转录组学和蛋白质组学分析,并测定相关叶绿素荧光参数。观察到UV-B胁迫对植物的光合机制产生负面影响,扰乱多个代谢过程。多组学分析表明,施用ABA可减轻UV-B对光合作用的有害影响,并增强植物的抗氧化防御能力。此外,UV-B照射和ABA处理均显著影响苯丙烷生物合成途径,激活关键酶基因,如4CL、CCR和HCT。该研究还强调了MYB-bHLH-WD40(MBW)复合体在调节该途径中的作用及其与ABA信号成分的相互作用。这些发现强调了ABA在提高植物对UV-B胁迫抗性方面的关键作用,并为植物胁迫生物学提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f955/11723134/635b06cb294a/plants-14-00101-g001a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验