Buj-Corral Irene, Sivatte-Adroer Maurici, Rodero-de-Lamo Lourdes, Marco-Almagro Lluís
Department of Mechanical Engineering, Barcelona School of Industrial Engineering (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal, 647, 08028 Barcelona, Spain.
Department of Mechanical Engineering, Polytechnic School of Engineering of Vilanova i la Geltrú (EPSEVG), Universitat Politècnica de Catalunya, Av. Víctor Balaguer, 1, 08880 Vilanova i la Geltrú, Spain.
Polymers (Basel). 2025 Jan 6;17(1):120. doi: 10.3390/polym17010120.
Artificial neural network (ANN) models have been used in the past to model surface roughness in manufacturing processes. Specifically, different parameters influence surface roughness in fused filament fabrication (FFF) processes. In addition, the characteristics of the networks have a direct impact on the performance of the models. In this work, a study about the use of ANN to model surface roughness in FFF processes is presented. The main objective of the paper is discovering how key ANN parameters (specifically, the number of neurons, the training algorithm, and the percentage of training and validation datasets) affect the accuracy of surface roughness predictions. To address this question, 125 3D printing experiments were conducted changing orientation angle, layer height and printing temperature, and measuring average roughness Ra as response. A multilayer perceptron neural network model with backpropagation algorithm was used. The study evaluates the effect of three ANN parameters: (1) number of neurons in the hidden layer (4, 5, 6 or 7), (2) training algorithm (Levenberg-Marquardt, Resilient Backpropagation or Scaled Conjugate Gradient), and (3) data splitting ratios (70%-15%-15% vs. 55%-15%-30%). Mean Absolute Error (MAE) was used as the performance metric. The Resilient Backpropagation algorithm, 7 neurons, and using 55% of training data yielded the best predictive performance, minimizing the MAE. Additionally, the impact of the dataset size on prediction accuracy was analysed. It was observed that the performance of the ANN gets worse as the number of datasets is reduced, emphasizing the importance of having sufficient data. This study will help to select appropriate values for the printing parameters in FFF processes, as well as to define the characteristics of the ANN to be used to model surface roughness.
人工神经网络(ANN)模型过去已被用于对制造过程中的表面粗糙度进行建模。具体而言,不同参数会影响熔融长丝制造(FFF)过程中的表面粗糙度。此外,网络的特性对模型的性能有直接影响。在这项工作中,提出了一项关于使用人工神经网络对FFF过程中的表面粗糙度进行建模的研究。本文的主要目的是发现人工神经网络的关键参数(具体而言,神经元数量、训练算法以及训练和验证数据集的百分比)如何影响表面粗糙度预测的准确性。为了解决这个问题,进行了125次3D打印实验,改变了取向角、层高和打印温度,并测量平均粗糙度Ra作为响应。使用了具有反向传播算法的多层感知器神经网络模型。该研究评估了三个人工神经网络参数的影响:(1)隐藏层中的神经元数量(4、5、6或7),(2)训练算法(Levenberg-Marquardt、弹性反向传播或缩放共轭梯度),以及(3)数据分割比例(70%-15%-15%与55%-15%-30%)。平均绝对误差(MAE)用作性能指标。弹性反向传播算法、7个神经元以及使用55%的训练数据产生了最佳预测性能,使MAE最小化。此外,分析了数据集大小对预测准确性的影响。观察到随着数据集数量的减少,人工神经网络的性能会变差,这强调了拥有足够数据的重要性。这项研究将有助于为FFF过程中的打印参数选择合适的值,以及定义用于对表面粗糙度进行建模的人工神经网络的特性。