Sazak Halenur, Kotan Muhammed
Department of Information Systems Engineering, Faculty of Computer and Information Sciences, Sakarya University, Sakarya 54050, Turkey.
Diagnostics (Basel). 2024 Dec 25;15(1):22. doi: 10.3390/diagnostics15010022.
Accurate detection and classification of blood cell types in microscopic images are crucial for diagnosing various hematological conditions. This study aims to develop and evaluate advanced architectures for automating blood cell detection and classification using the newly proposed YOLOv10 and YOLOv11 models, with a specific focus on identifying red blood cells (RBCs), white blood cells (WBCs), and platelets in microscopic images as a preliminary step of the complete blood count (CBC). : The Blood Cell Count Detection (BCCD) dataset was enriched using data augmentation techniques to improve model robustness and diversity. Extensive experiments were performed, including complete weight initialization, advanced optimization strategies, and meticulous hyperparameter tuning for the YOLOv11 architecture. : The YOLOv11-l model achieved an overall mean Average Precision (mAP) of 93.8%, reflecting its robust accuracy across multiple blood cell types. : The findings underscore the efficacy of the YOLOv11 architecture in automating blood cell classification with high precision, demonstrating its potential to enhance hematological analyses and support clinical diagnosis.
在显微镜图像中准确检测和分类血细胞类型对于诊断各种血液疾病至关重要。本研究旨在开发和评估先进的架构,以使用新提出的YOLOv10和YOLOv11模型实现血细胞检测和分类的自动化,特别关注在显微镜图像中识别红细胞(RBC)、白细胞(WBC)和血小板,作为全血细胞计数(CBC)的初步步骤。:使用数据增强技术丰富了血细胞计数检测(BCCD)数据集,以提高模型的鲁棒性和多样性。对YOLOv11架构进行了广泛的实验,包括完整的权重初始化、先进的优化策略和细致的超参数调整。:YOLOv11-l模型的总体平均精度均值(mAP)达到93.8%,反映了其在多种血细胞类型上的强大准确性。:研究结果强调了YOLOv11架构在高精度自动化血细胞分类方面的有效性,证明了其在增强血液分析和支持临床诊断方面的潜力。