Zhou Junyu, Li Chen, Kim Yong Kwan, Park Sunmin
Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China.
Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea.
Foods. 2025 Jan 4;14(1):127. doi: 10.3390/foods14010127.
Alzheimer's disease (AD) prevention is a critical challenge for aging societies, necessitating the exploration of food ingredients and whole foods as potential therapeutic agents. This study aimed to identify natural compounds (NCs) with therapeutic potential in AD using an innovative bioinformatics-integrated deep neural analysis approach, combining computational predictions with molecular docking and in vitro experiments for comprehensive evaluation. We employed the bioinformatics-integrated deep neural analysis of NCs for Disease Discovery (BioDeepNat) application in the data collected from chemical databases. Random forest regression models were utilized to predict the IC (pIC) values of ligands interacting with AD-related target proteins, including acetylcholinesterase (), amyloid precursor protein (), beta-secretase 1 (), microtubule-associated protein tau (), presenilin-1 (), tumor necrosis factor (), and valosin-containing protein (). Their activities were then validated through a molecular docking analysis using Autodock Vina. Predictions by the deep neural analysis identified 166 NCs with potential effects on AD across seven proteins, demonstrating outstanding recall performance. The top five food sources of these predicted compounds were black walnut, safflower, ginger, fig, corn, and pepper. Statistical clustering methodologies segregated the NCs into six well-defined groups, each characterized by convergent structural and chemical signatures. The systematic examination of structure-activity relationships uncovered differential molecular patterns among clusters, illuminating the sophisticated correlation between molecular properties and biological activity. Notably, NCs with high activity, such as astragalin, dihydromyricetin, and coumarin, and medium activity, such as luteolin, showed promising effects in improving cell survival and reducing lipid peroxidation and expression levels in PC12 cells treated with lipopolysaccharide. In conclusion, our findings demonstrate the efficacy of combining bioinformatics with deep neural networks to expedite the discovery of previously unidentified food-derived active ingredients (NCs) for AD intervention.
阿尔茨海默病(AD)的预防对老龄化社会来说是一项严峻挑战,因此有必要探索食品成分和全食物作为潜在治疗剂。本研究旨在使用一种创新的生物信息学集成深度神经分析方法,结合计算预测、分子对接和体外实验进行综合评估,以识别在AD中具有治疗潜力的天然化合物(NCs)。我们在从化学数据库收集的数据中应用了用于疾病发现的NCs生物信息学集成深度神经分析(BioDeepNat)。利用随机森林回归模型预测与AD相关靶蛋白相互作用的配体的IC(pIC)值,这些靶蛋白包括乙酰胆碱酯酶、淀粉样前体蛋白、β-分泌酶1、微管相关蛋白tau、早老素-1、肿瘤坏死因子和含缬酪肽蛋白。然后使用Autodock Vina通过分子对接分析验证它们的活性。深度神经分析的预测识别出166种对七种蛋白质有潜在AD作用的NCs,显示出出色的召回性能。这些预测化合物的前五大食物来源是黑胡桃、红花、生姜、无花果、玉米和胡椒。统计聚类方法将NCs分为六个明确的组,每组具有收敛的结构和化学特征。对构效关系的系统研究揭示了各簇之间不同的分子模式,阐明了分子性质与生物活性之间的复杂相关性。值得注意的是,高活性的NCs,如紫云英苷、二氢杨梅素和香豆素,以及中等活性的NCs,如木犀草素,在用脂多糖处理的PC12细胞中,在提高细胞存活率、降低脂质过氧化和 表达水平方面显示出有前景的效果。总之,我们的研究结果证明了将生物信息学与深度神经网络相结合以加速发现用于AD干预的先前未鉴定的食物来源活性成分(NCs)的有效性。