Kreouzi Magdalini, Theodorakis Nikolaos, Feretzakis Georgios, Paxinou Evgenia, Sakagianni Aikaterini, Kalles Dimitris, Anastasiou Athanasios, Verykios Vassilios S, Nikolaou Maria
Department of Internal Medicine & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece.
NT-CardioMetabolics, Clinic for Metabolism and Athletic Performance, 47 Tirteou Str., 17564 Palaio Faliro, Greece.
Cancers (Basel). 2024 Dec 25;17(1):28. doi: 10.3390/cancers17010028.
: Melanoma, an aggressive form of skin cancer, accounts for a significant proportion of skin-cancer-related deaths worldwide. Early and accurate differentiation between melanoma and benign melanocytic nevi is critical for improving survival rates but remains challenging because of diagnostic variability. Convolutional neural networks (CNNs) have shown promise in automating melanoma detection with accuracy comparable to expert dermatologists. This study evaluates and compares the performance of four CNN architectures-DenseNet121, ResNet50V2, NASNetMobile, and MobileNetV2-for the binary classification of dermoscopic images. : A dataset of 8825 dermoscopic images from DermNet was standardized and divided into training (80%), validation (10%), and testing (10%) subsets. Image augmentation techniques were applied to enhance model generalizability. The CNN architectures were pre-trained on ImageNet and customized for binary classification. Models were trained using the Adam optimizer and evaluated based on accuracy, area under the receiver operating characteristic curve (AUC-ROC), inference time, and model size. The statistical significance of the differences was assessed using McNemar's test. : DenseNet121 achieved the highest accuracy (92.30%) and an AUC of 0.951, while ResNet50V2 recorded the highest AUC (0.957). MobileNetV2 combined efficiency with competitive performance, achieving a 92.19% accuracy, the smallest model size (9.89 MB), and the fastest inference time (23.46 ms). NASNetMobile, despite its compact size, had a slower inference time (108.67 ms), and slightly lower accuracy (90.94%). Performance differences among the models were statistically significant ( < 0.0001). : DenseNet121 demonstrated a superior diagnostic performance, while MobileNetV2 provided the most efficient solution for deployment in resource-constrained settings. The CNNs show substantial potential for improving melanoma detection in clinical and mobile applications.
黑色素瘤是一种侵袭性皮肤癌,在全球与皮肤癌相关的死亡中占相当大的比例。黑色素瘤与良性黑素细胞痣的早期准确鉴别对于提高生存率至关重要,但由于诊断的可变性,这仍然具有挑战性。卷积神经网络(CNN)在自动化黑色素瘤检测方面已显示出前景,其准确性可与皮肤科专家相媲美。本研究评估并比较了四种CNN架构——DenseNet121、ResNet50V2、NASNetMobile和MobileNetV2——用于皮肤镜图像二分类的性能。
来自DermNet的8825张皮肤镜图像数据集进行了标准化处理,并分为训练集(80%)、验证集(10%)和测试集(10%)。应用图像增强技术来提高模型的泛化能力。CNN架构在ImageNet上进行预训练,并针对二分类进行定制。模型使用Adam优化器进行训练,并基于准确率、受试者工作特征曲线下面积(AUC-ROC)、推理时间和模型大小进行评估。使用McNemar检验评估差异的统计学意义。
DenseNet121达到了最高准确率(92.30%)和0.951的AUC,而ResNet50V2记录了最高的AUC(0.957)。MobileNetV2将效率与有竞争力的性能相结合,达到了92.19%的准确率、最小的模型大小(9.89MB)和最快的推理时间(23.46毫秒)。NASNetMobile尽管尺寸紧凑,但推理时间较慢(108.67毫秒),准确率略低(90.94%)。模型之间的性能差异具有统计学意义(<0.0001)。
DenseNet121表现出卓越的诊断性能,而MobileNetV2为在资源受限环境中部署提供了最有效的解决方案。CNN在临床和移动应用中改善黑色素瘤检测方面显示出巨大潜力。