Suppr超能文献

用于恶性黑色素瘤检测的结合皮肤镜图像患者元数据的深度学习分类器

Deep Learning Classifier with Patient's Metadata of Dermoscopic Images in Malignant Melanoma Detection.

作者信息

Ningrum Dina Nur Anggraini, Yuan Sheng-Po, Kung Woon-Man, Wu Chieh-Chen, Tzeng I-Shiang, Huang Chu-Ya, Li Jack Yu-Chuan, Wang Yao-Chin

机构信息

Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.

Public Health Department, Universitas Negeri Semarang, Semarang City, Indonesia.

出版信息

J Multidiscip Healthc. 2021 Apr 21;14:877-885. doi: 10.2147/JMDH.S306284. eCollection 2021.

Abstract

BACKGROUND

Incidence of skin cancer is one of the global burdens of malignancies that increase each year, with melanoma being the deadliest one. Imaging-based automated skin cancer detection still remains challenging owing to variability in the skin lesions and limited standard dataset availability. Recent research indicates the potential of deep convolutional neural networks (CNN) in predicting outcomes from simple as well as highly complicated images. However, its implementation requires high-class computational facility, that is not feasible in low resource and remote areas of health care. There is potential in combining image and patient's metadata, but the study is still lacking.

OBJECTIVE

We want to develop malignant melanoma detection based on dermoscopic images and patient's metadata using an artificial intelligence (AI) model that will work on low-resource devices.

METHODS

We used an open-access dermatology repository of International Skin Imaging Collaboration (ISIC) Archive dataset consist of 23,801 biopsy-proven dermoscopic images. We tested performance for binary classification malignant melanomas vs nonmalignant melanomas. From 1200 sample images, we split the data for training (72%), validation (18%), and testing (10%). We compared CNN with image data only (CNN model) vs CNN for image data combined with an artificial neural network (ANN) for patient's metadata (CNN+ANN model).

RESULTS

The balanced accuracy for CNN+ANN model was higher (92.34%) than the CNN model (73.69%). Combination of the patient's metadata using ANN prevents the overfitting that occurs in the CNN model using dermoscopic images only. This small size (24 MB) of this model made it possible to run on a medium class computer without the need of cloud computing, suitable for deployment on devices with limited resources.

CONCLUSION

The CNN+ANN model can increase the accuracy of classification in malignant melanoma detection even with limited data and is promising for development as a screening device in remote and low resources health care.

摘要

背景

皮肤癌的发病率是全球恶性肿瘤负担之一,且逐年上升,其中黑色素瘤最为致命。由于皮肤病变的变异性以及标准数据集有限,基于成像的自动化皮肤癌检测仍然具有挑战性。最近的研究表明,深度卷积神经网络(CNN)在预测简单以及高度复杂图像的结果方面具有潜力。然而,其实施需要高级计算设备,这在医疗资源匮乏和偏远地区是不可行的。结合图像和患者元数据具有潜力,但相关研究仍很缺乏。

目的

我们希望使用一种能在低资源设备上运行的人工智能(AI)模型,基于皮肤镜图像和患者元数据来开发恶性黑色素瘤检测方法。

方法

我们使用了国际皮肤成像协作组织(ISIC)存档数据集的一个开放获取的皮肤病学资料库,该数据集包含23,801张经活检证实的皮肤镜图像。我们测试了对恶性黑色素瘤与非恶性黑色素瘤进行二元分类的性能。从1200张样本图像中,我们将数据分为训练集(72%)、验证集(18%)和测试集(10%)。我们将仅使用图像数据的CNN(CNN模型)与结合了患者元数据的人工神经网络(ANN)的图像数据的CNN(CNN + ANN模型)进行了比较。

结果

CNN + ANN模型的平衡准确率(92.34%)高于CNN模型(73.69%)。使用ANN结合患者元数据可防止仅使用皮肤镜图像的CNN模型中出现的过拟合。该模型体积小(24MB),无需云计算就能在中等配置的计算机上运行,适合在资源有限的设备上部署。

结论

即使数据有限,CNN + ANN模型也能提高恶性黑色素瘤检测中的分类准确率,有望开发成为偏远和资源匮乏地区医疗保健中的筛查设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7679/8071207/d5d7e2ea3609/JMDH-14-877-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验