Suppr超能文献

用于非典型色素性面部病变诊断的人工智能模型的比较分析

Comparative Analysis of AI Models for Atypical Pigmented Facial Lesion Diagnosis.

作者信息

Cartocci Alessandra, Luschi Alessio, Tognetti Linda, Cinotti Elisa, Farnetani Francesca, Lallas Aimilios, Paoli John, Longo Caterina, Moscarella Elvira, Tiodorovic Danica, Stanganelli Ignazio, Suppa Mariano, Dika Emi, Zalaudek Iris, Pizzichetta Maria Antonietta, Perrot Jean Luc, Cevenini Gabriele, Iadanza Ernesto, Rubegni Giovanni, Kittler Harald, Tschandl Philipp, Rubegni Pietro

机构信息

Dermatology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy.

Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy.

出版信息

Bioengineering (Basel). 2024 Oct 17;11(10):1036. doi: 10.3390/bioengineering11101036.

Abstract

Diagnosing atypical pigmented facial lesions (aPFLs) is a challenging topic for dermatologists. Accurate diagnosis of these lesions is crucial for effective patient management, especially in dermatology, where visual assessment plays a central role. Incorrect diagnoses can result in mismanagement, delays in appropriate interventions, and potential harm. AI, however, holds the potential to enhance diagnostic accuracy and provide reliable support to clinicians. This work aimed to evaluate and compare the effectiveness of machine learning (logistic regression of lesion features and patient metadata) and deep learning (CNN analysis of images) models in dermoscopy diagnosis and the management of aPFLs. This study involved the analysis of 1197 dermoscopic images of facial lesions excised due to suspicious and histologically confirmed malignancy, classified into seven classes (lentigo maligna-LM; lentigo maligna melanoma-LMM; atypical nevi-AN; pigmented actinic keratosis-PAK; solar lentigo-SL; seborrheic keratosis-SK; and seborrheic lichenoid keratosis-SLK). Image samples were collected through the Integrated Dermoscopy Score (iDScore) project. The statistical analysis of the dataset shows that the patients mean age was 65.5 ± 14.2, and the gender was equally distributed (580 males-48.5%; 617 females-51.5%). A total of 41.7% of the sample constituted malignant lesions (LM and LMM). Meanwhile, the benign lesions were mainly PAK (19.3%), followed by SL (22.2%), AN (10.4%), SK (4.0%), and SLK (2.3%). The lesions were mainly localised in the cheek and nose areas. A stratified analysis of the assessment provided by the enrolled dermatologists was also performed, resulting in 2445 evaluations of the 1197 images (2.1 evaluations per image on average). The physicians demonstrated higher accuracy in differentiating between malignant and benign lesions (71.2%) than in distinguishing between the seven specific diagnoses across all the images (42.9%). The logistic regression model obtained a precision of 39.1%, a sensitivity of 100%, a specificity of 33.9%, and an accuracy of 53.6% on the test set, while the CNN model showed lower sensitivity (58.2%) and higher precision (47.0%), specificity (90.8%), and accuracy (59.5%) for melanoma diagnosis. This research demonstrates how AI can enhance the diagnostic accuracy in complex dermatological cases like aPFLs by integrating AI models with clinical data and evaluating different diagnostic approaches, paving the way for more precise and scalable AI applications in dermatology, showing their critical role in improving patient management and the outcomes in dermatology.

摘要

对皮肤科医生来说,诊断非典型色素沉着性面部病变(aPFLs)是一个具有挑战性的课题。准确诊断这些病变对于有效的患者管理至关重要,尤其是在皮肤科,视觉评估起着核心作用。错误的诊断可能导致管理不当、适当干预的延迟以及潜在危害。然而,人工智能有潜力提高诊断准确性并为临床医生提供可靠支持。这项工作旨在评估和比较机器学习(病变特征与患者元数据的逻辑回归)和深度学习(图像的卷积神经网络分析)模型在皮肤镜诊断和aPFLs管理中的有效性。本研究涉及对1197张因可疑且经组织学证实为恶性而切除的面部病变皮肤镜图像进行分析,这些病变分为七类(恶性雀斑样痣-LM;恶性雀斑样痣黑色素瘤-LMM;非典型痣-AN;色素性光化性角化病-PAK;日光性雀斑样痣-SL;脂溢性角化病-SK;以及脂溢性苔藓样角化病-SLK)。图像样本通过综合皮肤镜评分(iDScore)项目收集。数据集的统计分析表明,患者的平均年龄为6岁5.5±14.2岁,性别分布均衡(580名男性-48.5%;617名女性-51.5%)。样本中共有41.7%为恶性病变(LM和LMM)。同时,良性病变主要为PAK(19.3%),其次是SL(22.2%)、AN(10.4%)、SK(4.0%)和SLK(2.3%)。病变主要位于脸颊和鼻子区域。还对参与研究的皮肤科医生提供的评估进行了分层分析,对1197张图像进行了2445次评估(平均每张图像2.1次评估)。医生在区分恶性和良性病变方面(71.2%)比在区分所有图像中的七种具体诊断方面(42.9%)表现出更高的准确性。逻辑回归模型在测试集上的精确率为39.1%,灵敏度为100%,特异度为33.9%,准确率为53.6%,而卷积神经网络模型在黑色素瘤诊断方面显示出较低的灵敏度(58.2%)和较高的精确率(47.0%)、特异度(90.8%)和准确率(59.5%)。这项研究展示了人工智能如何通过将人工智能模型与临床数据相结合并评估不同的诊断方法,提高aPFLs等复杂皮肤病病例的诊断准确性,为皮肤科更精确、可扩展的人工智能应用铺平道路,显示出它们在改善皮肤科患者管理和治疗结果方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a127/11504969/94bb277683c7/bioengineering-11-01036-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验