Suppr超能文献

一种使用深度学习和Transformer的物联网网络中针对DDoS攻击的多类入侵检测系统。

A Multi-Class Intrusion Detection System for DDoS Attacks in IoT Networks Using Deep Learning and Transformers.

作者信息

Wahab Sheikh Abdul, Sultana Saira, Tariq Noshina, Mujahid Maleeha, Khan Javed Ali, Mylonas Alexios

机构信息

Department of Computing and Technology, H-9 Campus, Iqra University, Islamabad 44000, Pakistan.

Department of Avionics Engineering, Main Campus PAF Complex E-9, Air University, Islamabad 44000, Pakistan.

出版信息

Sensors (Basel). 2025 Aug 6;25(15):4845. doi: 10.3390/s25154845.

Abstract

The rapid proliferation of Internet of Things (IoT) devices has significantly increased vulnerability to Distributed Denial of Service (DDoS) attacks, which can severely disrupt network operations. DDoS attacks in IoT networks disrupt communication and compromise service availability, causing severe operational and economic losses. In this paper, we present a Deep Learning (DL)-based Intrusion Detection System (IDS) tailored for IoT environments. Our system employs three architectures-Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), and Transformer-based models-to perform binary, three-class, and 12-class classification tasks on the CiC IoT 2023 dataset. Data preprocessing includes log normalization to stabilize feature distributions and SMOTE-based oversampling to mitigate class imbalance. Experiments on the CIC-IoT 2023 dataset show that, in the binary classification task, the DNN achieved 99.2% accuracy, the CNN 99.0%, and the Transformer 98.8%. In three-class classification (benign, DDoS, and non-DDoS), all models attained near-perfect performance (approximately 99.9-100%). In the 12-class scenario (benign plus 12 attack types), the DNN, CNN, and Transformer reached 93.0%, 92.7%, and 92.5% accuracy, respectively. The high precision, recall, and ROC-AUC values corroborate the efficacy and generalizability of our approach for IoT DDoS detection. Comparative analysis indicates that our proposed IDS outperforms state-of-the-art methods in terms of detection accuracy and efficiency. These results underscore the potential of integrating advanced DL models into IDS frameworks, thereby providing a scalable and effective solution to secure IoT networks against evolving DDoS threats. Future work will explore further enhancements, including the use of deeper Transformer architectures and cross-dataset validation, to ensure robustness in real-world deployments.

摘要

物联网(IoT)设备的迅速激增显著增加了遭受分布式拒绝服务(DDoS)攻击的脆弱性,这可能会严重扰乱网络运营。物联网网络中的DDoS攻击会干扰通信并危及服务可用性,造成严重的运营和经济损失。在本文中,我们提出了一种专为物联网环境量身定制的基于深度学习(DL)的入侵检测系统(IDS)。我们的系统采用三种架构——卷积神经网络(CNN)、深度神经网络(DNN)和基于Transformer的模型——在CiC IoT 2023数据集上执行二分类、三分类和十二分类任务。数据预处理包括日志归一化以稳定特征分布,以及基于SMOTE的过采样以减轻类别不平衡。在CIC-IoT 2023数据集上的实验表明,在二分类任务中,DNN的准确率达到99.2%,CNN为99.0%,Transformer为98.8%。在三分类(良性、DDoS和非DDoS)中,所有模型都达到了近乎完美的性能(约99.9 - 100%)。在十二分类场景(良性加上12种攻击类型)中,DNN、CNN和Transformer的准确率分别达到93.0%、92.7%和92.5%。高精度、召回率和ROC-AUC值证实了我们用于物联网DDoS检测方法的有效性和通用性。对比分析表明,我们提出的IDS在检测准确率和效率方面优于现有方法。这些结果强调了将先进的DL模型集成到IDS框架中的潜力,从而提供一种可扩展且有效的解决方案,以保护物联网网络免受不断演变的DDoS威胁。未来的工作将探索进一步的改进,包括使用更深的Transformer架构和跨数据集验证,以确保在实际部署中的稳健性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/030b/12349258/5e856d496c6c/sensors-25-04845-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验