Suppr超能文献

用于预测欧洲八个城市电场强度的可解释人工智能模型的比较分析

A Comparative Analysis of Explainable Artificial Intelligence Models for Electric Field Strength Prediction over Eight European Cities.

作者信息

Kiouvrekis Yiannis, Givisis Ioannis, Panagiotakopoulos Theodor, Tsilikas Ioannis, Ploussi Agapi, Spyratou Ellas, Efstathopoulos Efstathios P

机构信息

Mathematics, Computer Science and Artificial Intelligence Lab, Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece.

Department of Information Technologies, University of Limassol, 3020 Limassol, Cyprus.

出版信息

Sensors (Basel). 2024 Dec 25;25(1):53. doi: 10.3390/s25010053.

Abstract

The widespread propagation of wireless communication devices, from smartphones and tablets to Internet of Things (IoT) systems, has become an integral part of modern life. However, the expansion of wireless technology has also raised public concern about the potential health risks associated with prolonged exposure to electromagnetic fields. Our objective is to determine the optimal machine learning model for constructing electric field strength maps across urban areas, enhancing the field of environmental monitoring with the aid of sensor-based data collection. Our machine learning models consist of a novel and comprehensive dataset collected from a network of strategically placed sensors, capturing not only electromagnetic field readings but also additional urban features, including population density, levels of urbanization, and specific building characteristics. This sensor-driven approach, coupled with explainable AI, enables us to identify key factors influencing electromagnetic exposure more accurately. The integration of IoT sensor data with machine learning opens the potential for creating highly detailed and dynamic electromagnetic pollution maps. These maps are not merely static snapshots; they offer researchers the ability to track trends over time, assess the effectiveness of mitigation efforts, and gain a deeper understanding of electromagnetic field distribution in urban environments. Through the extensive dataset, our models can yield highly accurate and dynamic electric field strength maps. For this study, we performed a comprehensive analysis involving 566 machine learning models across eight French cities: Lyon, Saint-Étienne, Clermont-Ferrand, Dijon, Nantes, Rouen, Lille, and Paris. The analysis incorporated six core approaches: k-Nearest Neighbors, XGBoost, Random Forest, Neural Networks, Decision Trees, and Linear Regression. The findings underscore the superior predictive capabilities of ensemble methods such as Random Forests and XGBoost, which outperform individual models. Simpler approaches like Decision Trees and k-NN offer effective yet slightly less precise alternatives. Neural Networks, despite their complexity, highlight the potential for further refinement in this application. In addition, our results show that the machine learning models significantly outperform the linear regression baseline, demonstrating the added value of more complex techniques in this domain. Our SHAP analysis reveals that the feature importance rankings in tree-based machine learning models differ significantly from those in k-NN, neural network, and linear regression models.

摘要

从智能手机、平板电脑到物联网(IoT)系统,无线通信设备的广泛普及已成为现代生活中不可或缺的一部分。然而,无线技术的扩展也引发了公众对长期暴露于电磁场相关潜在健康风险的担忧。我们的目标是确定用于构建城市区域电场强度地图的最佳机器学习模型,借助基于传感器的数据收集来加强环境监测领域。我们的机器学习模型由一个新颖且全面的数据集组成,该数据集来自精心布置的传感器网络,不仅能捕捉电磁场读数,还能获取其他城市特征,包括人口密度、城市化水平和特定建筑特征。这种由传感器驱动的方法,再加上可解释的人工智能,使我们能够更准确地识别影响电磁暴露的关键因素。将物联网传感器数据与机器学习相结合,为创建高度详细和动态的电磁污染地图开辟了潜力。这些地图不仅仅是静态快照;它们使研究人员能够跟踪随时间的趋势,评估缓解措施的有效性,并更深入地了解城市环境中的电磁场分布。通过广泛的数据集,我们的模型可以生成高度准确和动态的电场强度地图。在本研究中,我们对法国八个城市(里昂、圣艾蒂安、克莱蒙费朗、第戎、南特、鲁昂昂、里尔和巴黎)的566个机器学习模型进行了全面分析。该分析纳入了六种核心方法:k近邻、极端梯度提升(XGBoost)、随机森林、神经网络、决策树和线性回归。研究结果强调了随机森林和极端梯度提升等集成方法具有卓越的预测能力,其表现优于单个模型。决策树和k近邻等更简单的方法提供了有效但精度稍低的替代方案。神经网络尽管复杂,但凸显了在此应用中进一步优化的潜力。此外,我们的结果表明,机器学习模型显著优于线性回归基线,证明了该领域中更复杂技术的附加价值。我们的SHAP分析表明,基于树的机器学习模型中的特征重要性排名与k近邻、神经网络和线性回归模型中的排名有显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f22/11722629/8bdfaaeccf21/sensors-25-00053-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验