Miller Leanne, Navarro Pedro J, Rosique Francisca
División de Sistemas e Ingeniería Electrónica (DSIE), Campus Muralla del Mar, s/n, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain.
Sensors (Basel). 2024 Dec 27;25(1):89. doi: 10.3390/s25010089.
This paper presents a novel end-to-end architecture based on edge detection for autonomous driving. The architecture has been designed to bridge the domain gap between synthetic and real-world images for end-to-end autonomous driving applications and includes custom edge detection layers before the Efficient Net convolutional module. To train the architecture, RGB and depth images were used together with inertial data as inputs to predict the driving speed and steering wheel angle. To pretrain the architecture, a synthetic multimodal dataset for autonomous driving applications was created. The dataset includes driving data from 100 diverse weather and traffic scenarios, gathered from multiple sensors including cameras and an IMU as well as from vehicle control variables. The results show that including edge detection layers in the architecture improves performance for transfer learning when using synthetic and real-world data. In addition, pretraining with synthetic data reduces training time and enhances model performance when using real-world data.
本文提出了一种基于边缘检测的新型端到端自动驾驶架构。该架构旨在弥合合成图像与真实世界图像之间的领域差距,以用于端到端自动驾驶应用,并且在高效网络卷积模块之前包含自定义边缘检测层。为了训练该架构,将RGB图像和深度图像与惯性数据一起用作输入,以预测行驶速度和方向盘角度。为了对该架构进行预训练,创建了一个用于自动驾驶应用的合成多模态数据集。该数据集包括来自100种不同天气和交通场景的驾驶数据,这些数据是从包括摄像头和惯性测量单元(IMU)在内的多个传感器以及车辆控制变量中收集的。结果表明,在架构中包含边缘检测层可提高在使用合成数据和真实世界数据时进行迁移学习的性能。此外,使用合成数据进行预训练可减少训练时间,并在使用真实世界数据时提高模型性能。