Suppr超能文献

关于用于康复和机器人技术的运动想象和稳态视觉诱发电位中脑机接口的文献计量学综述

A Bibliometric Review of Brain-Computer Interfaces in Motor Imagery and Steady-State Visually Evoked Potentials for Applications in Rehabilitation and Robotics.

作者信息

Chio Nayibe, Quiles-Cucarella Eduardo

机构信息

Instituto de Automática e Informática Industrial, Universitat Politècnica de València, 46022 Valencia, Spain.

Facultad de Ingeniería, Ingeniería Mecatrónica, Universidad Autónoma de Bucaramanga, Bucaramanga 680003, Colombia.

出版信息

Sensors (Basel). 2024 Dec 30;25(1):154. doi: 10.3390/s25010154.

Abstract

In this paper, a bibliometric review is conducted on brain-computer interfaces (BCI) in non-invasive paradigms like motor imagery (MI) and steady-state visually evoked potentials (SSVEP) for applications in rehabilitation and robotics. An exploratory and descriptive approach is used in the analysis. Computational tools such as the biblioshiny application for R-Bibliometrix and VOSViewer are employed to generate data on years, sources, authors, affiliation, country, documents, co-author, co-citation, and co-occurrence. This article allows for the identification of different bibliometric indicators such as the research process, evolution, visibility, volume, influence, impact, and production in the field of brain-computer interfaces for MI and SSVEP paradigms in rehabilitation and robotics applications from 2000 to August 2024.

摘要

在本文中,我们对脑机接口(BCI)进行了文献计量综述,该综述涉及运动想象(MI)和稳态视觉诱发电位(SSVEP)等非侵入性范式,用于康复和机器人技术应用。分析采用探索性和描述性方法。使用诸如用于R-Bibliometrix的biblioshiny应用程序和VOSViewer等计算工具来生成关于年份、来源、作者、机构、国家、文献、共同作者、共被引和共现的数据。本文有助于识别不同的文献计量指标,如2000年至2024年8月期间,康复和机器人技术应用中MI和SSVEP范式的脑机接口领域的研究过程、发展、知名度、数量、影响力、影响和产出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41e7/11722989/3669429f6f59/sensors-25-00154-g001.jpg

相似文献

2
Examining sensory ability, feature matching and assessment-based adaptation for a brain-computer interface using the steady-state visually evoked potential.
Disabil Rehabil Assist Technol. 2019 Apr;14(3):241-249. doi: 10.1080/17483107.2018.1428369. Epub 2018 Jan 31.
3
SSVEP-Based Brain Computer Interface Controlled Soft Robotic Glove for Post-Stroke Hand Function Rehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:1737-1744. doi: 10.1109/TNSRE.2022.3185262. Epub 2022 Jul 4.
4
An Adaptive Hybrid Brain-Computer Interface for Hand Function Rehabilitation of Stroke Patients.
IEEE Trans Neural Syst Rehabil Eng. 2024;32:2950-2960. doi: 10.1109/TNSRE.2024.3431025. Epub 2024 Aug 20.
5
Multimodal brain-controlled system for rehabilitation training: Combining asynchronous online brain-computer interface and exoskeleton.
J Neurosci Methods. 2024 Jun;406:110132. doi: 10.1016/j.jneumeth.2024.110132. Epub 2024 Apr 9.
6
Low-Cost Robotic Guide Based on a Motor Imagery Brain-Computer Interface for Arm Assisted Rehabilitation.
Int J Environ Res Public Health. 2020 Jan 21;17(3):699. doi: 10.3390/ijerph17030699.
7
Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm.
Sensors (Basel). 2022 Jul 2;22(13):5000. doi: 10.3390/s22135000.
8
Motor imagery, P300 and error-related EEG-based robot arm movement control for rehabilitation purpose.
Med Biol Eng Comput. 2014 Dec;52(12):1007-17. doi: 10.1007/s11517-014-1204-4. Epub 2014 Sep 30.
9
10
Hybrid Brain-Computer Interface Controlled Soft Robotic Glove for Stroke Rehabilitation.
IEEE J Biomed Health Inform. 2024 Jul;28(7):4194-4203. doi: 10.1109/JBHI.2024.3392412. Epub 2024 Jul 2.

本文引用的文献

2
Research hotspots and trends of brain-computer interface technology in stroke: a bibliometric study and visualization analysis.
Front Neurosci. 2023 Aug 31;17:1243151. doi: 10.3389/fnins.2023.1243151. eCollection 2023.
4
Rehabilitation of motor function after stroke: A bibliometric analysis of global research from 2004 to 2022.
Front Aging Neurosci. 2022 Nov 2;14:1024163. doi: 10.3389/fnagi.2022.1024163. eCollection 2022.
5
Global Trends and Hotspots in Research on Rehabilitation Robots: A Bibliometric Analysis From 2010 to 2020.
Front Public Health. 2022 Jan 11;9:806723. doi: 10.3389/fpubh.2021.806723. eCollection 2021.
6
Research on the Emotions Based on BrainComputer Technology: A Bibliometric Analysis and Research Agenda.
Front Psychol. 2021 Nov 1;12:771591. doi: 10.3389/fpsyg.2021.771591. eCollection 2021.
7
NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework.
IEEE Trans Cybern. 2022 Dec;52(12):13279-13292. doi: 10.1109/TCYB.2021.3122969. Epub 2022 Nov 18.
9
A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
Biosens Bioelectron. 2021 Sep 1;187:113326. doi: 10.1016/j.bios.2021.113326. Epub 2021 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验