Suppr超能文献

太阳能电站预测性维护与网络安全的最新进展综述

Review of Recent Advances in Predictive Maintenance and Cybersecurity for Solar Plants.

作者信息

Ledmaoui Younes, El Maghraoui Adila, El Aroussi Mohamed, Saadane Rachid

机构信息

Laboratory Engineering System, Hassania School of Public Works, Casablanca BP 8108, Morocco.

Green Tech Institute, Mohammed VI Polytechnic University, Benguerir BP 43150, Morocco.

出版信息

Sensors (Basel). 2025 Jan 2;25(1):206. doi: 10.3390/s25010206.

Abstract

This paper presents a systematic review that explores the latest advancements in predictive maintenance methods and cybersecurity for solar panel systems, shedding light on the advantages and challenges of the most recent developments in predictive maintenance techniques for solar plants. Numerous important research studies, reviews, and empirical studies published between 2018 and 2023 are examined. These technologies help in detecting defects, degradation, and anomalies in solar panels by facilitating early intervention and reducing the probability of inverter failures. The analysis also emphasizes how challenging it is to adopt predictive maintenance in the renewable energy industry. Achieving a balance between model complexity and accuracy, dealing with system unpredictability, and adjusting to shifting environmental conditions are among the challenges. It also highlights the Internet of Things (IoT), machine learning (ML), and deep learning (DL), which are all incorporated into solar panel predictive maintenance. By enabling real-time monitoring, data analysis, and anomaly identification, these developments improve the accuracy and effectiveness of maintenance procedures.

摘要

本文进行了一项系统综述,探讨了太阳能板系统预测性维护方法和网络安全方面的最新进展,揭示了太阳能电站预测性维护技术最新发展的优势和挑战。研究考察了2018年至2023年间发表的众多重要研究、综述和实证研究。这些技术通过促进早期干预和降低逆变器故障概率,有助于检测太阳能板中的缺陷、退化和异常情况。分析还强调了在可再生能源行业采用预测性维护的挑战性。挑战包括在模型复杂性和准确性之间取得平衡、应对系统不可预测性以及适应不断变化的环境条件。它还突出了物联网(IoT)、机器学习(ML)和深度学习(DL),这些都被纳入了太阳能板预测性维护中。通过实现实时监测、数据分析和异常识别,这些进展提高了维护程序的准确性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb51/11722890/984639771f4b/sensors-25-00206-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验