Varalakshmi K, Kumar J
School of Electronics Engineering, VIT-AP University, Inavolu, Amaravathi, 522 237, Andhra Pradesh, India.
Sci Rep. 2025 Jul 26;15(1):27201. doi: 10.1038/s41598-025-10268-8.
Predictive maintenance in Industrial IoT (IIoT) networks faces challenges due to dynamic conditions, device heterogeneity, and evolving data patterns. This paper introduces an ensemble-based framework combining Deep Reinforcement Learning (DRL), Random Forest (RF), and Gradient Boosting Machines (GBM) to improve fault prediction and maintenance efficiency. Key contributions include: (i) adaptive fault prediction using DRL, which dynamically learns from real-time sensor data to optimize maintenance decisions; (ii) robust fault classification via RF, addressing class imbalance in IIoT environments; and (iii) enhanced predictive accuracy through GBM, leveraging feature dependencies for better generalization. The integrated approach enables dynamic adaptation to changing data, optimized maintenance scheduling, and reduced unplanned downtime. Extensive simulations, evaluated using accuracy, precision, recall, F1-score, and latency, demonstrate superior performance over traditional methods, minimizing false positives and enhancing fault detection reliability. The proposed solution offers a scalable and adaptive predictive maintenance strategy, improving operational efficiency and reducing costs in IIoT-based industrial systems.
工业物联网(IIoT)网络中的预测性维护面临着动态条件、设备异构性和不断演变的数据模式等挑战。本文介绍了一种基于集成的框架,该框架结合了深度强化学习(DRL)、随机森林(RF)和梯度提升机(GBM),以提高故障预测和维护效率。主要贡献包括:(i)使用DRL进行自适应故障预测,它从实时传感器数据中动态学习以优化维护决策;(ii)通过RF进行稳健的故障分类,解决IIoT环境中的类不平衡问题;(iii)通过GBM提高预测准确性,利用特征依赖性实现更好的泛化。这种集成方法能够动态适应不断变化的数据,优化维护调度,并减少计划外停机时间。使用准确率、精确率、召回率、F1分数和延迟进行评估的广泛模拟表明,该方法比传统方法具有更优的性能,可最大限度地减少误报并提高故障检测可靠性。所提出的解决方案提供了一种可扩展且自适应的预测性维护策略,可提高基于IIoT的工业系统的运营效率并降低成本。