Suppr超能文献

端到端多尺度自适应遥感图像去雾网络

End-to-End Multi-Scale Adaptive Remote Sensing Image Dehazing Network.

作者信息

Wang Xinhua, Yuan Botao, Dong Haoran, Hao Qiankun, Li Zhuang

机构信息

School of Computer Science, Northeast Electric Power University, Jilin 132012, China.

State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

出版信息

Sensors (Basel). 2025 Jan 2;25(1):218. doi: 10.3390/s25010218.

Abstract

Satellites frequently encounter atmospheric haze during imaging, leading to the loss of detailed information in remote sensing images and significantly compromising image quality. This detailed information is crucial for applications such as Earth observation and environmental monitoring. In response to the above issues, this paper proposes an end-to-end multi-scale adaptive feature extraction method for remote sensing image dehazing (MSD-Net). In our network model, we introduce a dilated convolution adaptive module to extract global and local detail features of remote sensing images. The design of this module can extract important image features at different scales. By expanding convolution, the receptive field is expanded to capture broader contextual information, thereby obtaining a more global feature representation. At the same time, a self-adaptive attention mechanism is also used, allowing the module to automatically adjust the size of its receptive field based on image content. In this way, important features suitable for different scales can be flexibly extracted to better adapt to the changes in details in remote sensing images. To fully utilize the features at different scales, we also adopted feature fusion technology. By fusing features from different scales and integrating information from different scales, more accurate and rich feature representations can be obtained. This process aids in retrieving lost detailed information from remote sensing images, thereby enhancing the overall image quality. A large number of experiments were conducted on the HRRSD and RICE datasets, and the results showed that our proposed method can better restore the original details and texture information of remote sensing images in the field of dehazing and is superior to current state-of-the-art methods.

摘要

卫星在成像过程中经常遇到大气雾霾,导致遥感图像中的详细信息丢失,严重影响图像质量。这些详细信息对于诸如地球观测和环境监测等应用至关重要。针对上述问题,本文提出了一种用于遥感图像去雾的端到端多尺度自适应特征提取方法(MSD-Net)。在我们的网络模型中,我们引入了一个空洞卷积自适应模块来提取遥感图像的全局和局部细节特征。该模块的设计能够在不同尺度上提取重要的图像特征。通过扩张卷积,感受野得以扩大,以捕获更广泛的上下文信息,从而获得更全局的特征表示。同时,还使用了自适应注意力机制,使该模块能够根据图像内容自动调整其感受野的大小。通过这种方式,可以灵活地提取适合不同尺度的重要特征,以更好地适应遥感图像中细节的变化。为了充分利用不同尺度的特征,我们还采用了特征融合技术。通过融合不同尺度的特征并整合来自不同尺度的信息,可以获得更准确、更丰富的特征表示。这一过程有助于从遥感图像中恢复丢失的详细信息,从而提高整体图像质量。我们在HRRSD和RICE数据集上进行了大量实验,结果表明,我们提出的方法在去雾领域能够更好地恢复遥感图像的原始细节和纹理信息,并且优于当前的先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4147/11723466/58b700014fb4/sensors-25-00218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验