Cruciano Cristina, Rocco Davide, Genco Armando, Tognazzi Andrea, Locatelli Andrea, Carletti Luca, Fedorov Alexey, Trovatello Chiara, Di Blasio Giuseppe, Bargigia Ilaria, Louca Charalambos, Gubian Paolo, Tavani Giulio, Lovisolo Luca, Tuktamyshev Artur, Andreani Lucio C, Galli Matteo, Cerullo Giulio, Leo Giuseppe, Sanguinetti Stefano, De Angelis Costantino, Bollani Monica
Department of Physics, Politecnico of Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy.
Department of Information Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy.
ACS Nano. 2025 Jan 28;19(3):3500-3509. doi: 10.1021/acsnano.4c13327. Epub 2025 Jan 11.
Manipulating the optical landscape of single quantum dots (QDs) is essential to increase the emitted photon output, enhancing their performance as chemical sensors and single-photon sources. Micro-optical structures are typically used for this task, with the drawback of a large size compared to the embedded single emitters. Nanophotonic architectures hold the promise to modify dramatically the emission properties of QDs, boosting light-matter interactions at the nanoscale, in ultracompact devices. Here, we investigate the interplay between gallium arsenide (GaAs) single QDs and aluminum gallium arsenide (AlGaAs) nanostructures, capitalizing on the Kerker condition for precise control of the QD emission directivity. An extensive analysis of the photoluminescence spectra of several QDs embedded in nanodisks revealed a pronounced directivity enhancement due to the Kerker effect, confirmed by theoretical simulations, resulting in a 14-fold increase of emitted intensity. Angle-resolved spectroscopy experiments also proved that the integration of GaAs QDs within nanostructures determines a precise angled emission, offering a distinctive avenue for manipulating the spatial characteristics of emitted light by exploiting Mie resonances. This work contributes to the optimization of QD integration in nanostructures and suggests potential improvements for applications in optical communications.
操控单量子点(QD)的光学特性对于提高发射光子输出至关重要,这能增强其作为化学传感器和单光子源的性能。微光学结构通常用于此任务,但与嵌入的单个发射器相比存在尺寸较大的缺点。纳米光子结构有望显著改变量子点的发射特性,在超紧凑设备中增强纳米尺度下的光与物质相互作用。在此,我们研究砷化镓(GaAs)单量子点与砷化铝镓(AlGaAs)纳米结构之间的相互作用,利用克尔条件精确控制量子点发射的方向性。对嵌入纳米盘中的多个量子点的光致发光光谱进行的广泛分析表明,由于克尔效应,发射方向性显著增强,理论模拟证实了这一点,导致发射强度增加了14倍。角分辨光谱实验还证明,将GaAs量子点集成到纳米结构中可确定精确的角度发射,通过利用米氏共振为操控发射光的空间特性提供了一条独特途径。这项工作有助于优化量子点在纳米结构中的集成,并为光通信应用提出潜在的改进建议。