University of Melbourne, Melbourne, Australia.
University of Amsterdam, Amsterdam, Netherlands.
Elife. 2023 Jan 19;12:e82424. doi: 10.7554/eLife.82424.
When interacting with the dynamic world, the brain receives outdated sensory information, due to the time required for neural transmission and processing. In motion perception, the brain may overcome these fundamental delays through predictively encoding the position of moving objects using information from their past trajectories. In the present study, we evaluated this proposition using multivariate analysis of high temporal resolution electroencephalographic data. We tracked neural position representations of moving objects at different stages of visual processing, relative to the real-time position of the object. During early stimulus-evoked activity, position representations of moving objects were activated substantially earlier than the equivalent activity evoked by unpredictable flashes, aligning the earliest representations of moving stimuli with their real-time positions. These findings indicate that the predictability of straight trajectories enables full compensation for the neural delays accumulated early in stimulus processing, but that delays still accumulate across later stages of cortical processing.
当与动态世界相互作用时,由于神经传递和处理所需的时间,大脑会接收到过时的感觉信息。在运动感知中,大脑可能通过使用过去轨迹中的信息来预测地编码移动物体的位置,从而克服这些基本的延迟。在本研究中,我们使用高时间分辨率脑电图数据的多元分析来评估这一假设。我们在相对于物体实时位置的不同视觉处理阶段跟踪移动物体的神经位置表示。在早期的刺激诱发活动中,移动物体的位置表示比由不可预测的闪光引起的等效活动早得多被激活,将移动刺激的最早表示与它们的实时位置对齐。这些发现表明,直线路径的可预测性使得可以完全补偿刺激处理早期累积的神经延迟,但延迟仍然会在皮质处理的后期阶段累积。