Suppr超能文献

关于使用曲面断层片通过人工智能算法进行个体性别检测准确性的系统评价和荟萃分析。

Systematic Review and Meta-Analysis on the Accuracy of Artificial Intelligence Algorithms in Individuals Gender Detection Using Orthopantomograms.

作者信息

Dashti Mahmood, Azimi Tara, Khosraviani Farshad, Azimian Sarina, Bahanan Lina, Zahmatkesh Houyar, Ashi Heba, Khurshid Zohaib

机构信息

Researcher, Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Post Graduate Student, Orofacial Pain and Disfunction, UCLA School of Dentistry, California, USA.

出版信息

Int Dent J. 2025 Jun;75(3):2157-2168. doi: 10.1016/j.identj.2024.12.018. Epub 2025 Jan 10.

Abstract

The integration of artificial intelligence (AI) into dental imaging has led to significant advancements, particularly in the analysis of panoramic radiographs, also known as orthopantomograms (OPGs). One emerging application of AI is in determining gender from these radiographs, a task traditionally performed by forensic experts using manual methods. This systematic review and meta-analysis aim to evaluate the accuracy of AI algorithms in gender determination using OPGs, focusing on the reliability and potential clinical and forensic applications of these technologies. A systematic review and meta-analysis were conducted according to PRISMA guidelines. The study included research articles that utilised AI algorithms for gender detection based on OPG images. Five major databases were searched, and studies were selected based on strict inclusion and exclusion criteria. The analysis focused on studies that reported accuracy, sensitivity, and specificity of AI models. Statistical analyses were performed using R software, including forest plots and funnel plots, to evaluate the diagnostic performance and potential publication bias. The meta-analysis included 13 studies, yielding a pooled accuracy estimate of 88.66%. The results demonstrated high specificity among the AI models, with some studies achieving accuracy rates as high as 99.20%. However, there was variability in sensitivity across different studies, indicating that some models are more reliable than others depending on the dataset and features used. The funnel plot analysis suggested slight asymmetry, indicating potential publication bias or heterogeneity. AI models show significant potential in accurately determining gender from OPG images, with some models achieving near-perfect accuracy. Continued research is needed to enhance model consistency and expand the applicability of these tools across different demographic groups.

摘要

将人工智能(AI)集成到牙科成像中已经带来了显著进展,特别是在全景X线片(也称为口腔全景片,OPG)的分析方面。人工智能的一个新兴应用是从这些X线片中确定性别,这一任务传统上由法医专家使用手工方法执行。本系统评价和荟萃分析旨在评估使用OPG进行性别判定的人工智能算法的准确性,重点关注这些技术的可靠性以及潜在的临床和法医应用。根据PRISMA指南进行了系统评价和荟萃分析。该研究纳入了利用人工智能算法基于OPG图像进行性别检测的研究文章。检索了五个主要数据库,并根据严格的纳入和排除标准选择研究。分析集中于报告人工智能模型准确性、敏感性和特异性的研究。使用R软件进行统计分析,包括森林图和漏斗图,以评估诊断性能和潜在的发表偏倚。荟萃分析纳入了13项研究,汇总准确率估计为88.66%。结果表明人工智能模型具有较高的特异性,一些研究的准确率高达99.20%。然而,不同研究之间的敏感性存在差异,这表明根据所使用的数据集和特征,一些模型比其他模型更可靠。漏斗图分析显示略有不对称,表明可能存在发表偏倚或异质性。人工智能模型在从OPG图像中准确确定性别方面显示出巨大潜力,一些模型达到了近乎完美的准确率。需要持续研究以提高模型的一致性,并扩大这些工具在不同人群中的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff5e/12142756/04e1391d8b12/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验