Suppr超能文献

人工智能辅助评估X线片中的股骨颈骨折:一项系统评价和多水平Meta分析

Artificial Intelligence-Guided Assessment of Femoral Neck Fractures in Radiographs: A Systematic Review and Multilevel Meta-Analysis.

作者信息

Ramadanov Nikolai, Lettner Jonathan, Hable Robert, Hakam Hassan Tarek, Prill Robert, Dimitrov Dobromir, Becker Roland, Schreyer Andreas G, Salzmann Mikhail

机构信息

Center of Orthopaedics and Traumatology, Brandenburg Medical School, University Hospital Brandenburg an der Havel, Brandenburg an der Havel, Germany.

Faculty of Health Science Brandenburg, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany.

出版信息

Orthop Surg. 2025 May;17(5):1277-1286. doi: 10.1111/os.14250. Epub 2024 Sep 27.

Abstract

Artificial Intelligence (AI) is a dynamic area of computer science that is constantly expanding its practical benefits in various fields. The aim of this study was to analyze AI-guided radiological assessment of femoral neck fractures by performing a systematic review and multilevel meta-analysis of primary studies. The study protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) on May 21, 2024 [CRD42024541055]. The updated Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were strictly followed. A systematic literature search of PubMed, Web of Science, Ovid (Med), and Epistemonikos databases was conducted until May 31, 2024. Critical appraisal using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool showed that the overall quality of the included studies was moderate. In addition, publication bias was presented in funnel plots. A frequentist multilevel meta-analysis was performed using a random effects model with inverse variance and restricted maximum likelihood heterogeneity estimator with Hartung-Knapp adjustment. The accuracy between AI-based and human assessment of femoral neck fractures, sensitivity and specificity with 95% confidence intervals (CIs) were calculated. Study heterogeneity was assessed using the Higgins test I (low heterogeneity <25%, moderate heterogeneity: 25%-75%, and high heterogeneity >75%). Finally, 11 studies with a total of 21,163 radiographs were included for meta-analysis. The results of the study quality assessment using the QUADAS-2 tool are presented in Table 2. The funnel plots indicated a moderate publication bias. The AI showed excellent accuracy in assessment of femoral neck fractures (Accuracy = 0.91, 95% CI 0.83 to 0.96; I  = 99%; p < 0.01). The AI showed good sensitivity in assessment of femoral neck fractures (Sensitivity = 0.87, 95% CI 0.77 to 0.93; I  = 98%; p < 0.01). The AI showed excellent specificity in assessment of femoral neck fractures (Specificity = 0.91, 95% CI 0.77 to 0.97; I  = 97%; p < 0.01). AI-guided radiological assessment of femoral neck fractures showed excellent accuracy and specificity as well as good sensitivity. The use of AI as a faster and more reliable assessment tool and as an aid in radiological routine seems justified.

摘要

人工智能(AI)是计算机科学中一个充满活力的领域,它在各个领域不断扩大其实际效益。本研究的目的是通过对原始研究进行系统评价和多层次荟萃分析,分析人工智能引导下的股骨颈骨折影像学评估。该研究方案于2024年5月21日在国际前瞻性系统评价注册库(PROSPERO)注册[CRD42024541055]。严格遵循最新的系统评价和荟萃分析优先报告项目(PRISMA)指南。对PubMed、科学网、Ovid(医学)和Epistemonikos数据库进行了系统的文献检索,直至2024年5月31日。使用诊断准确性研究质量评估-2(QUADAS-2)工具进行的批判性评价表明,纳入研究的总体质量为中等。此外,漏斗图显示存在发表偏倚。使用具有逆方差的随机效应模型和经Hartung-Knapp调整的受限最大似然异质性估计器进行了频率学派多层次荟萃分析。计算了基于人工智能和人工评估股骨颈骨折的准确性、敏感性和特异性以及95%置信区间(CI)。使用Higgins检验I评估研究异质性(低异质性<25%,中等异质性:25%-75%,高异质性>75%)。最后,纳入11项研究,共21163张X线片进行荟萃分析。使用QUADAS-2工具进行的研究质量评估结果见表2。漏斗图表明存在中等程度的发表偏倚。人工智能在股骨颈骨折评估中显示出优异的准确性(准确性=0.91,95%CI为0.83至0.96;I=99%;p<0.01)。人工智能在股骨颈骨折评估中显示出良好的敏感性(敏感性=0.87,95%CI为0.77至0.93;I=98%;p<0.01)。人工智能在股骨颈骨折评估中显示出优异的特异性(特异性=0.91,95%CI为0.77至0.97;I=97%;p<0.01)。人工智能引导下的股骨颈骨折影像学评估显示出优异的准确性和特异性以及良好的敏感性。将人工智能用作更快、更可靠的评估工具并辅助放射学常规检查似乎是合理的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bf1/12050172/d26a483c0c71/OS-17-1277-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验