Dashti Mahmood, Ghaedsharaf Sahar, Ghasemi Shohreh, Zare Niusha, Constantin Elena-Florentina, Fahimipour Amir, Tajbakhsh Neda, Ghadimi Niloofar
Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Department of Oral and Maxillofacial Radiology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Imaging Sci Dent. 2024 Sep;54(3):232-239. doi: 10.5624/isd.20240038. Epub 2024 Aug 12.
The use of artificial intelligence (AI) and deep learning algorithms in dentistry, especially for processing radiographic images, has markedly increased. However, detailed information remains limited regarding the accuracy of these algorithms in detecting mandibular fractures.
This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Specific keywords were generated regarding the accuracy of AI algorithms in detecting mandibular fractures on radiographic images. Then, the PubMed/Medline, Scopus, Embase, and Web of Science databases were searched. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool was employed to evaluate potential bias in the selected studies. A pooled analysis of the relevant parameters was conducted using STATA version 17 (StataCorp, College Station, TX, USA), utilizing the metandi command.
Of the 49 studies reviewed, 5 met the inclusion criteria. All of the selected studies utilized convolutional neural network algorithms, albeit with varying backbone structures, and all evaluated panoramic radiography images. The pooled analysis yielded a sensitivity of 0.971 (95% confidence interval [CI]: 0.881-0.949), a specificity of 0.813 (95% CI: 0.797-0.824), and a diagnostic odds ratio of 7.109 (95% CI: 5.27-8.913).
This review suggests that deep learning algorithms show potential for detecting mandibular fractures on panoramic radiography images. However, their effectiveness is currently limited by the small size and narrow scope of available datasets. Further research with larger and more diverse datasets is crucial to verify the accuracy of these tools in in practical dental settings.
人工智能(AI)和深度学习算法在牙科领域的应用,尤其是用于处理放射影像,已显著增加。然而,关于这些算法在检测下颌骨骨折方面的准确性的详细信息仍然有限。
本荟萃分析按照系统评价和荟萃分析的首选报告项目(PRISMA)指南进行。生成了关于AI算法在放射影像上检测下颌骨骨折准确性的特定关键词。然后,检索了PubMed/Medline、Scopus、Embase和科学网数据库。采用诊断准确性研究质量评估2(QUADAS-2)工具评估所选研究中的潜在偏倚。使用STATA 17版(美国德克萨斯州大学站市StataCorp公司),利用metandi命令对相关参数进行汇总分析。
在审查的49项研究中,5项符合纳入标准。所有选定的研究都使用了卷积神经网络算法,尽管骨干结构各不相同,并且都评估了全景放射影像。汇总分析得出的敏感性为0.971(95%置信区间[CI]:0.881-0.949),特异性为0.813(95%CI:0.797-0.824),诊断比值比为7.109(95%CI:5.27-8.913)。
本综述表明,深度学习算法在全景放射影像上检测下颌骨骨折具有潜力。然而,它们的有效性目前受到可用数据集规模小和范围窄的限制。使用更大、更多样化的数据集进行进一步研究对于验证这些工具在实际牙科环境中的准确性至关重要。