Suppr超能文献

利用可解释人工智能和大规模数据集对肾脏组织学类型进行全面分类。

Leveraging explainable AI and large-scale datasets for comprehensive classification of renal histologic types.

作者信息

Moon Seung Wan, Kim Jisup, Kim Young Jae, Kim Sung Hyun, An Chi Sung, Kim Kwang Gi, Jung Chan Kwon

机构信息

Department of Biomedical Engineering, Pre-medical Course, College of Medicine, Gil Medical Center, Gachon University, 38-13 3beon-gil, Namdong-gu, Incheon, 21565, Korea.

Department of Pathology, Gil Medical Center, Gachon University College of Medicine, Dokjeom-ro 3beon-gil, Namdong-gu, Incheon, 21565, Korea.

出版信息

Sci Rep. 2025 Jan 11;15(1):1745. doi: 10.1038/s41598-025-85857-8.

Abstract

Recently, as the number of cancer patients has increased, much research is being conducted for efficient treatment, including the use of artificial intelligence in genitourinary pathology. Recent research has focused largely on the classification of renal cell carcinoma subtypes. Nonetheless, the broader categorization of renal tissue into non-neoplastic normal tissue, benign tumor and malignant tumor remains understudied. This gap in research can primarily be attributed to the limited availability of extensive datasets including benign tumor and normal tissue in addition to specific type of renal cell carcinoma, which hampers the ability to conduct comprehensive studies in these broader categories. This research introduces a model aimed at classifying renal tissue into three primary categories: normal (non-neoplastic), benign tumor, and malignant tumor. Utilizing digital pathology while slide images (WSIs) from nephrectomy specimens of 2,535 patients from multiple institutions, the model provides a foundational approach for distinguishing these key tissue types. The study utilized a dataset of 12,223 WSIs comprising 1,300 WSIs of normal tissue, 700 WSIs of benign tumors, and 10,223 WSIs of malignant tumors. Employing the ResNet-18 architecture and a Multiple Instance Learning approach, the model demonstrated high accuracy, with F1-scores of 0.934 (CI: 0.933-0.934) for normal tissue, 0.684 (CI: 0.682-0.687) for benign tumors, and 0.878 (CI: 0.877-0.879) for malignant tumors. The overall performance was also notable, achieving a weighted average F1-score of 0.879 (CI: 0.879-0.880) and a weighted average area under the receiver operating characteristic curve of 0.969 (CI: 0.969-0.969). This model significantly aids in the swift and accurate diagnosis of renal tissue, encompassing non-neoplastic normal tissue, benign tumor, and malignant tumor.

摘要

近年来,随着癌症患者数量的增加,人们正在进行大量研究以寻求高效的治疗方法,包括在泌尿生殖系统病理学中使用人工智能。最近的研究主要集中在肾细胞癌亚型的分类上。尽管如此,将肾组织更广泛地分类为非肿瘤性正常组织、良性肿瘤和恶性肿瘤仍未得到充分研究。研究中的这一差距主要可归因于除特定类型的肾细胞癌外,包含良性肿瘤和正常组织的广泛数据集有限,这阻碍了在这些更广泛类别中进行全面研究的能力。本研究引入了一个旨在将肾组织分为三个主要类别的模型:正常(非肿瘤性)、良性肿瘤和恶性肿瘤。该模型利用数字病理学技术,对来自多个机构的2535例患者肾切除标本的玻片图像(全切片图像,WSIs)进行分析,为区分这些关键组织类型提供了一种基础方法。该研究使用了一个包含12223张WSIs的数据集,其中包括1300张正常组织的WSIs、700张良性肿瘤的WSIs和10223张恶性肿瘤的WSIs。采用ResNet-18架构和多实例学习方法,该模型表现出高准确率,正常组织的F1分数为0.934(置信区间:0.933 - 0.934),良性肿瘤为0.684(置信区间:0.682 - 0.687),恶性肿瘤为0.878(置信区间:0.877 - 0.879)。整体性能也很显著,加权平均F1分数为0.879(置信区间:0.879 - 0.880),接收器操作特征曲线下的加权平均面积为0.969(置信区间:0.969 - 0.969)。该模型显著有助于快速、准确地诊断肾组织,包括非肿瘤性正常组织、良性肿瘤和恶性肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40eb/11724863/89d759db964b/41598_2025_85857_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验