Computational Diagnostics Lab, UCLA, 924 Westwood Blvd Suite 600, Los Angeles, CA, 90024, USA; Department of Radiology, UCLA, 924 Westwood Blvd Suite 600, Los Angeles, CA, 90024, USA.
Computational Diagnostics Lab, UCLA, 924 Westwood Blvd Suite 600, Los Angeles, CA, 90024, USA; Department of Radiology, UCLA, 924 Westwood Blvd Suite 600, Los Angeles, CA, 90024, USA.
Comput Biol Med. 2021 Apr;131:104253. doi: 10.1016/j.compbiomed.2021.104253. Epub 2021 Feb 10.
Large numbers of histopathological images have been digitized into high resolution whole slide images, opening opportunities in developing computational image analysis tools to reduce pathologists' workload and potentially improve inter- and intra-observer agreement. Most previous work on whole slide image analysis has focused on classification or segmentation of small pre-selected regions-of-interest, which requires fine-grained annotation and is non-trivial to extend for large-scale whole slide analysis. In this paper, we proposed a multi-resolution multiple instance learning model that leverages saliency maps to detect suspicious regions for fine-grained grade prediction. Instead of relying on expensive region- or pixel-level annotations, our model can be trained end-to-end with only slide-level labels. The model is developed on a large-scale prostate biopsy dataset containing 20,229 slides from 830 patients. The model achieved 92.7% accuracy, 81.8% Cohen's Kappa for benign, low grade (i.e. Grade group 1) and high grade (i.e. Grade group ≥ 2) prediction, an area under the receiver operating characteristic curve (AUROC) of 98.2% and an average precision (AP) of 97.4% for differentiating malignant and benign slides. The model obtained an AUROC of 99.4% and an AP of 99.8% for cancer detection on an external dataset.
大量的组织病理学图像已经被数字化为高分辨率全切片图像,为开发计算图像分析工具提供了机会,以减少病理学家的工作量,并有可能提高观察者间和观察者内的一致性。以前大多数全切片图像分析的工作都集中在对小的预选感兴趣区域进行分类或分割,这需要细粒度的注释,并且对于大规模的全切片分析来说并不容易扩展。在本文中,我们提出了一种多分辨率多实例学习模型,利用显著图来检测可疑区域进行细粒度的分级预测。我们的模型不需要昂贵的区域或像素级注释,而是可以仅使用幻灯片级标签进行端到端训练。该模型是在一个大型前列腺活检数据集上开发的,该数据集包含来自 830 名患者的 20229 张幻灯片。该模型在良性、低级别(即等级组 1)和高级别(即等级组≥2)预测方面的准确率为 92.7%,Cohen's Kappa 为 81.8%,接收者操作特征曲线下的面积(AUROC)为 98.2%,用于区分恶性和良性幻灯片的平均精度(AP)为 97.4%。该模型在外部数据集上的癌症检测中获得了 99.4%的 AUROC 和 99.8%的 AP。