Suppr超能文献

nipalsMCIA:通过非线性迭代偏最小二乘法在R语言中实现灵活的多块降维

nipalsMCIA: flexible multi-block dimensionality reduction in R via nonlinear iterative partial least squares.

作者信息

Mattessich Max, Reyna Joaquin, Aron Edel, Ay Ferhat, Kilmer Misha, Kleinstein Steven H, Konstorum Anna

机构信息

Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.

Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.

出版信息

Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btaf015.

Abstract

SUMMARY

With the increased reliance on multi-omics data for bulk and single-cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Nonlinear Iterative Partial Least Squares. We applied nipalsMCIA to both bulk and single-cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.

AVAILABILITY AND IMPLEMENTATION

nipalsMCIA is available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/nipalsMCIA.html, and includes detailed documentation and application vignettes.

摘要

摘要

随着在批量和单细胞分析中对多组学数据的依赖增加,拥有强大的无监督学习方法来进行聚类、可视化和特征选择变得势在必行。我们引入了nipalsMCIA,这是一种用于联合降维的多重共惯性分析(MCIA)的实现,它使用非线性迭代偏最小二乘法的扩展来求解目标函数。我们将nipalsMCIA应用于批量和单细胞数据集,并观察到对于具有大样本量和/或特征维度的数据,其速度比其他实现有显著提升。

可用性和实现方式

nipalsMCIA作为一个Bioconductor包可在https://bioconductor.org/packages/release/bioc/html/nipalsMCIA.html获取,其中包括详细的文档和应用示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26e5/11783316/7f135fbe2428/btaf015f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验