Mattessich Max, Reyna Joaquin, Aron Edel, Ay Ferhat, Kilmer Misha, Kleinstein Steven H, Konstorum Anna
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btaf015.
With the increased reliance on multi-omics data for bulk and single-cell analyses, the availability of robust approaches to perform unsupervised learning for clustering, visualization, and feature selection is imperative. We introduce nipalsMCIA, an implementation of multiple co-inertia analysis (MCIA) for joint dimensionality reduction that solves the objective function using an extension to Nonlinear Iterative Partial Least Squares. We applied nipalsMCIA to both bulk and single-cell datasets and observed significant speed-up over other implementations for data with a large sample size and/or feature dimension.
nipalsMCIA is available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/nipalsMCIA.html, and includes detailed documentation and application vignettes.
随着在批量和单细胞分析中对多组学数据的依赖增加,拥有强大的无监督学习方法来进行聚类、可视化和特征选择变得势在必行。我们引入了nipalsMCIA,这是一种用于联合降维的多重共惯性分析(MCIA)的实现,它使用非线性迭代偏最小二乘法的扩展来求解目标函数。我们将nipalsMCIA应用于批量和单细胞数据集,并观察到对于具有大样本量和/或特征维度的数据,其速度比其他实现有显著提升。
nipalsMCIA作为一个Bioconductor包可在https://bioconductor.org/packages/release/bioc/html/nipalsMCIA.html获取,其中包括详细的文档和应用示例。