Suppr超能文献

使用可解释的机器学习模型探索土地利用对高密度城市地区鸟类多样性的影响。

Exploring the impact of land use on bird diversity in high-density urban areas using explainable machine learning models.

作者信息

Li Xiangyi, Wang Zhaoxi, Chen Yu, Wang Zhengwu, Kuang Da

机构信息

School of Architecture and Urban Planning, Shenzhen University, Guangdong, China; State Key Laboratory of Subtropical Building and Urban Science, Guangdong, China.

School of Architecture and Urban Planning, Shenzhen University, Guangdong, China.

出版信息

J Environ Manage. 2025 Feb;374:124080. doi: 10.1016/j.jenvman.2025.124080. Epub 2025 Jan 11.

Abstract

Amid rapid urbanization, land use shifts in cities globally have profound effects on ecosystems and biodiversity. Birds, as a crucial component of urban biodiversity, are highly sensitive to environmental changes and often serve as indicator species for biodiversity. This study, using Shenzhen as a case study, integrates machine learning techniques with spatial statistical methods. Firstly, a multi-layer perceptron (MLP) model was employed to globally simulate bird richness based on citizen science data. Subsequently, a geographic weighted random forest (GW-RF) model was used to construct the complex relationship between bird diversity and land use. Additionally, SHAP analysis evaluates the effects of urban factors and development patterns on bird diversity. The findings reveal that anthropogenic disturbances and habitat factors significantly influence bird diversity. Furthermore, the impact of land landscape patterns on bird diversity exhibits notable spatial heterogeneity, with landscape patterns within ecological spaces and developed land showing marked differences in their effects on bird diversity. The study's findings clarify the intricate effects of urbanization on bird diversity, pinpointing specific ecological conservation areas. It underscores the importance of ecological conservation in guiding urban development, advocating for strategic restoration to bolster urban sustainability and optimize land use for the protection of ecological diversity.

摘要

在快速城市化进程中,全球城市的土地利用变化对生态系统和生物多样性产生了深远影响。鸟类作为城市生物多样性的重要组成部分,对环境变化高度敏感,常被用作生物多样性的指示物种。本研究以深圳为例,将机器学习技术与空间统计方法相结合。首先,基于公民科学数据,采用多层感知器(MLP)模型对鸟类丰富度进行全局模拟。随后,使用地理加权随机森林(GW-RF)模型构建鸟类多样性与土地利用之间的复杂关系。此外,SHAP分析评估了城市因素和发展模式对鸟类多样性的影响。研究结果表明,人为干扰和栖息地因素对鸟类多样性有显著影响。此外,土地景观格局对鸟类多样性的影响呈现出明显的空间异质性,生态空间和已开发土地内的景观格局对鸟类多样性的影响存在显著差异。该研究结果阐明了城市化对鸟类多样性的复杂影响,确定了具体的生态保护区。它强调了生态保护在指导城市发展中的重要性,倡导进行战略恢复以增强城市可持续性,并优化土地利用以保护生态多样性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验