Suppr超能文献

用于自闭症谱系障碍诊断的时间对齐动态功能连接的概率稀疏自注意力提取

Prob-sparse self-attention extraction of time-aligned dynamic functional connectivity for ASD diagnosis.

作者信息

Chen Hongwu, Feng Fan, Lou Pengwei, Li Ying, Zhang MingLi, Zhao Feng

机构信息

School Hospital, Shandong Technology and Business University, Yantai, China.

School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.

出版信息

Heliyon. 2024 Dec 10;11(1):e41120. doi: 10.1016/j.heliyon.2024.e41120. eCollection 2025 Jan 15.

Abstract

Dynamic functional connectivity (DFC) has shown promise in the diagnosis of Autism Spectrum Disorder (ASD). However, extracting highly discriminative information from the complex DFC matrix remains a challenging task. In this paper, we propose an ASD classification framework PSA-FCN which is based on time-aligned DFC and Prob-Sparse Self-Attention to address this problem. Specifically, we introduce Prob-Sparse Self-Attention to selectively extract global features, and use self-attention distillation as a transition at each layer to capture local patterns and reduce dimensionality. Additionally, we construct a time-aligned DFC matrix to mitigate the time sensitivity of DFC and extend the dataset, thereby alleviating model overfitting. Our model is evaluated on fMRI data from the ABIDE NYU site, and the experimental results demonstrate that the model outperforms other methods in the paper with a classification accuracy of 81.8 %. Additionally, our research findings reveal significant variability in the DFC connections of brain regions of ASD patients, including Cuneus (CUN), Lingual gyrus (LING), Superior occipital gyrus (SOG), Posterior cingulate gyrus (PCG), and Precuneus (PCUN), which is consistent with prior research. In summary, our proposed PSA framework shows potential in ASD diagnosis as well as automatic discovery of critical ASD-related biomarkers.

摘要

动态功能连接性(DFC)在自闭症谱系障碍(ASD)的诊断中已显示出前景。然而,从复杂的DFC矩阵中提取高度有区分性的信息仍然是一项具有挑战性的任务。在本文中,我们提出了一个基于时间对齐DFC和概率稀疏自注意力的ASD分类框架PSA-FCN来解决这个问题。具体来说,我们引入概率稀疏自注意力来选择性地提取全局特征,并在每一层使用自注意力蒸馏作为过渡来捕捉局部模式并降低维度。此外,我们构建了一个时间对齐的DFC矩阵来减轻DFC的时间敏感性并扩展数据集,从而缓解模型过拟合。我们的模型在来自ABIDE纽约大学站点的功能磁共振成像(fMRI)数据上进行了评估,实验结果表明该模型在本文中的其他方法中表现更优,分类准确率达到81.8%。此外,我们的研究结果揭示了ASD患者脑区DFC连接的显著变异性,包括楔叶(CUN)、舌回(LING)、枕上回(SOG)、后扣带回(PCG)和楔前叶(PCUN),这与先前的研究一致。总之,我们提出的PSA框架在ASD诊断以及自动发现关键的ASD相关生物标志物方面显示出潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce89/11719308/4f9936b83e69/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验