Islam Jesse, Turgeon Maxime, Sladek Robert, Bhatnagar Sahir
McGill University Department of Quantitative Life Sciences, 805 rue Sherbrooke O, Montréal, H3A 0B9, Quebec, Canada.
University of Manitoba Department of Statistics, 50 Sifton Rd, Winnipeg, R3T2N2, Manitoba, Canada.
Mach Learn Appl. 2024 Jun;16. doi: 10.1016/j.mlwa.2024.100535. Epub 2024 Feb 20.
In the context of survival analysis, data-driven neural network-based methods have been developed to model complex covariate effects. While these methods may provide better predictive performance than regression-based approaches, not all can model time-varying interactions and complex baseline hazards. To address this, we propose Case-Base Neural Networks (CBNNs) as a new approach that combines the case-base sampling framework with flexible neural network architectures. Using a novel sampling scheme and data augmentation to naturally account for censoring, we construct a feed-forward neural network that includes time as an input. CBNNs predict the probability of an event occurring at a given moment to estimate the full hazard function. We compare the performance of CBNNs to regression and neural network-based survival methods in a simulation and three case studies using two time-dependent metrics. First, we examine performance on a simulation involving a complex baseline hazard and time-varying interactions to assess all methods, with CBNN outperforming competitors. Then, we apply all methods to three real data applications, with CBNNs outperforming the competing models in two studies and showing similar performance in the third. Our results highlight the benefit of combining case-base sampling with deep learning to provide a simple and flexible framework for data-driven modeling of single event survival outcomes that estimates time-varying effects and a complex baseline hazard by design. An R package is available at https://github.com/Jesse-Islam/cbnn.
在生存分析的背景下,已经开发出基于数据驱动的神经网络方法来对复杂的协变量效应进行建模。虽然这些方法可能比基于回归的方法具有更好的预测性能,但并非所有方法都能对时变相互作用和复杂的基线风险进行建模。为了解决这个问题,我们提出了基于案例的神经网络(CBNN),作为一种将基于案例的采样框架与灵活的神经网络架构相结合的新方法。我们使用一种新颖的采样方案和数据增强来自然地考虑删失,构建了一个将时间作为输入的前馈神经网络。CBNN预测在给定时刻发生事件的概率,以估计完整的风险函数。我们在一个模拟和三个案例研究中,使用两个与时间相关的指标,将CBNN的性能与基于回归和神经网络的生存方法进行比较。首先,我们在一个涉及复杂基线风险和时变相互作用的模拟中检验性能,以评估所有方法,结果显示CBNN优于竞争对手。然后,我们将所有方法应用于三个实际数据应用,在两项研究中CBNN优于竞争模型,在第三项研究中表现出相似的性能。我们的结果突出了将基于案例的采样与深度学习相结合的好处,为单事件生存结果的数据驱动建模提供了一个简单灵活的框架,该框架通过设计估计时变效应和复杂的基线风险。可在https://github.com/Jesse-Islam/cbnn获取一个R包。