Sprecher Uri, Dsouza Jeevitha, Marisat Monzer, Barasch Dinorah, Mishra Kumudesh, Kakhlon Or, Manor Joshua, Anikster Yair, Weil Miguel
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Mass Spectrometry Unit, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
Mol Genet Metab Rep. 2024 Dec 16;42:101172. doi: 10.1016/j.ymgmr.2024.101172. eCollection 2025 Mar.
Dihydrolipoamide dehydrogenase (DLD) deficiency is an autosomal recessive disorder characterized by a functional disruption in several critical mitochondrial enzyme complexes, including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase. Despite DLD's pivotal role in cellular energy metabolism, detailed molecular and metabolic consequences of DLD deficiency (DLDD) remain poorly understood. This study represents the first in-depth multi-omics analysis, specifically metabolomic and transcriptomic, of fibroblasts derived from a DLD-deficient patient compound heterozygous for a common Ashkenazi Jewish variant (c.685G > T) and a novel North African variant (c.158G > A). The investigation reveals significant metabolic disruptions that distinguish the cellular phenotype of DLDD from other metabolic disorders and healthy controls. Employing a range of cellular and molecular techniques, including live-cell imaging, mitochondrial activity assays, immunofluorescence, transcriptomics and metabolomic analysis, we compared DLDD fibroblasts with fibroblasts from glycogen storage disease type 1 A (GSD1a) patients and healthy controls (HC) subjects. Our metabolomics analysis identified significant alterations in mitochondrial metabolism, particularly reduced glycine cleavage, altered one carbon metabolism and serine catabolism. Transcriptome profiling highlighted dysregulation in genes associated with metabolic stress and mitochondrial dysfunction. Our findings highlight reduced mitochondrial activity and respiratory capacity in DLDD fibroblasts, similar to observations in GSD1a fibroblasts. This multi-omics approach not only advances our understanding of the pathophysiology of DLDD, but also illustrates the potential for developing targeted diagnostics and therapeutic strategies.
二氢硫辛酰胺脱氢酶(DLD)缺乏症是一种常染色体隐性疾病,其特征是几种关键的线粒体酶复合物功能紊乱,包括丙酮酸脱氢酶和α-酮戊二酸脱氢酶。尽管DLD在细胞能量代谢中起关键作用,但对DLD缺乏症(DLDD)的详细分子和代谢后果仍知之甚少。本研究首次对一名DLD缺乏症患者的成纤维细胞进行了深入的多组学分析,特别是代谢组学和转录组学分析,该患者为常见的阿什肯纳兹犹太变体(c.685G>T)和一种新的北非变体(c.158G>A)的复合杂合子。调查揭示了显著的代谢紊乱,这些紊乱将DLDD的细胞表型与其他代谢紊乱和健康对照区分开来。我们采用了一系列细胞和分子技术,包括活细胞成像、线粒体活性测定、免疫荧光、转录组学和代谢组学分析,将DLDD成纤维细胞与1A型糖原贮积病(GSD1a)患者的成纤维细胞和健康对照(HC)受试者的成纤维细胞进行了比较。我们的代谢组学分析确定了线粒体代谢的显著改变,特别是甘氨酸裂解减少、一碳代谢改变和丝氨酸分解代谢。转录组分析突出了与代谢应激和线粒体功能障碍相关基因的失调。我们的研究结果突出了DLDD成纤维细胞中线粒体活性和呼吸能力的降低,这与GSD1a成纤维细胞中的观察结果相似。这种多组学方法不仅推进了我们对DLDD病理生理学的理解,也说明了开发靶向诊断和治疗策略的潜力。